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What is Impala? 

Apache Impala (curently an ASF incubator project) provides high-performance, low-latency SQL 
queries on data stored in popular Apache Hadoop file formats. The fast response for queries enables 
interactive exploration and fine-tuning of analytic queries, rather than long batch jobs traditionally 
associated with SQL-on-Hadoop technologies. (You will often see the term "interactive" applied to these 
kinds of fast queries with human-scale response times.) 

Impala integrates with the Apache Hive metastore database, to share databases and tables between 
both components. The high level of integration with Apache Hive, and compatibility with the HiveQL 
syntax, lets you use either Impala or Hive to create tables, issue queries, load data, and so on. 

The following are some of the key advantages of Impala: 

• Impala integrates with the existing CDH ecosystem, meaning data can be stored, shared, and 
accessed using the various solutions included with CDH, including components such as Apache 
Hive, Apache Spark, Apache Solr, and others. This integration also avoids data silos and 
minimizes expensive data movement, all with shared security, governance, and administration.

• Impala provides access to data stored in CDH without requiring the Java skills required for 
MapReduce jobs. Impala can access data directly from the HDFS filesystem. Impala also 
provides a SQL front-end to access data in Apache HBase or in the Amazon Simple Storage 
System (S3), and offers deep integrations with popular third-party BI tools.

• Impala returns results typically within seconds or a few minutes, rather than the many minutes 
or hours that are often required for Hive queries to complete.

• Impala is pioneering the use of the Apache Parquet file format, a columnar storage layout that is 
optimized for large-scale queries typical in data warehouse scenarios. 

This Technical Briefing Book contains featured blog posts from the Cloudera Engineering Blog about 
key Impala concepts, Impala performance, and best practices. For more complete technical information, 
see: 

• The  Impala Guide in the Cloudera documentation

• Big Data Analyst courses from Cloudera University

• Getting Started with Impala, an O’Reilly Media book

• The Impala Cookbook  

Copyright 2016 Cloudera Inc. All Rights Reserved.

About Cloudera
Cloudera provides the world’s fastest, easiest, and most secure data platform built on Apache Hadoop. We help solve your most 
demanding business challenges with data.

http://www.cloudera.com/products/apache-hadoop/impala.html
http://blog.cloudera.com
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
http://www.cloudera.com/training/roles/analysts.html
http://shop.oreilly.com/product/0636920033936.do
http://www.cloudera.com
http://www.slideshare.net/cloudera/the-impala-cookbook-42530186
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New SQL Benchmarks: Impala Uniquely Delivers Analytic 
Database Performance 
By	
  Devadutta	
  Ghat,	
  David	
  Rorke,	
  and	
  Dileep	
  Kumar	
  (Feb.	
  2016)	
  

New testing results show a significant difference between the analytic database performance of Impala 
compared to batch and procedural development engines, as well as Impala running all 99 TPC-DS-
derived queries in the benchmark workload. 

2015 was an exciting year for Apache Impala (incubating). Cloudera’s Impala team significantly 
improved Impala’s scale and stability, which enabled many customers to deploy Impala clusters with 
hundreds of nodes, run millions of queries, and even push Impala concurrency to thousands of users. 

We introduced highly anticipated features like nested data types (see below), unified fine-grained 

security with RecordService, and Apache Sentry (incubating). We unveiled Apache Kudu (incubating), 
which enables Impala to query fast-changing data and provide updatability, and Kudu and Impala both 

became Apache Incubator projects. 

As noted in our recent roadmap update, 2016 is slated to be the most exciting year yet for Impala. With 
features like dynamic partition pruning, improved YARN integration, Amazon S3 support, and even 
better performance via multi-core joins and aggregations and increased runtime code-generation, 
Impala is set to take on even more use cases and greater concurrency as the analytic database for 
Apache Hadoop. 

Over the past few years, the distinction has widened between systems designed as analytic databases, 
as compared to SQL interfaces exposed for easier development (such as Apache Hive and the Spark 
SQL module in Apache Spark). Cloudera’s performance engineering team recently completed a new 
round of benchmarks comparing the most recent, stable releases of those SQL-on-Hadoop engines. For 
the low-latency and multi-user throughput performance requirements of BI and SQL analytics, there are 
clear, substantial differences between Impala as an analytic database compared to its batch and 
procedural-development engine peers: 

• For multi-user queries, Impala is on average 16.4x faster than Hive-on-Tez and 7.6x faster than
Spark SQL with Tungsten, with an average response time of 12.8s compared to over 1.6 minutes
or more.

• All 99 TPC-DS-derived queries in the benchmark run on Impala, with similar results in Impala’s
favor.

These results demonstrate Impala’s leadership in delivering the low-latency and multi-user throughput 
for running SQL analytics and BI on Hadoop. Even after the large investments that improved the 

http://www.cloudera.com/products/apache-hadoop/impala.html
https://blog.cloudera.com/blog/2015/11/new-in-cloudera-enterprise-5-5-support-for-complex-types-in-impala/
https://blog.cloudera.com/blog/2015/09/recordservice-for-fine-grained-security-enforcement-across-the-hadoop-ecosystem/
https://blog.cloudera.com/blog/2015/09/recordservice-for-fine-grained-security-enforcement-across-the-hadoop-ecosystem/
http://getkudu.io
http://incubator.apache.org
http://blog.cloudera.com/blog/2015/07/whats-next-for-impala-more-reliability-usability-and-performance-at-even-greater-scale/


5	
  

performance in Hive with Stinger and Spark with Tungsten, there is nearly an order-of-magnitude 
difference in performance when compared to an analytic database like Impala. 

We unfortunately cannot publish results against Impala’s analytic database competitors due to their 
proprietary licensing restrictions, but we have published the benchmarking queries so you can replicate 

the results that customers such as Quaero, Epsilon, and many others have seen. 

Now, for the details. 

Configuration 
All tests were run on the same 21-node cluster. For the previous round of testing, we ran on a smaller 
(64GB per node) memory footprint to correct a misperception that Impala only works well with lots of 
memory. But, this time, we ran on larger memory (384GB per node) to provide ample memory for Spark 
to perform at its best. 

Each node was configured as follows: 

• CPU: 2 sockets, 12 total cores, Intel Xeon CPU E5-2630L 0 at 2.00GHz

• 12 disk drives at 932GB each (one for the OS, the rest for HDFS)

• 384GB memory

Comparative Set 
• Impala 2.3

• Hive-on-Tez: Hive 2.0 on Tez 0.5.2 (aka Stinger; see appendix for results on Tez 0.8.2)

• Spark SQL 1.5 with Tungsten 

This time, we dropped Presto because it has not kept up with the SQL language functionality to run the 

latest benchmarks in an apples-to-apples comparison (due to its lack of DECIMAL  support, for 
example). 

Queries 
In this post, we demonstrate how to run all 99 queries derived from TPC-DS on Impala. Given the 
significant advancements Impala and other engines have made since our last performance update, we 

dropped previously used rewrites with DOUBLE  (as Impala and other engines support 

the DECIMAL  datatype now) and also dropped SQL-92 style join rewrites (as other engines are now 

capable of running without them). Full queries are published here. 

http://www.cloudera.com/customers/quaero.html
http://www.cloudera.com/customers/epsilon.html
http://impala.io
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez
https://spark.apache.org/sql/
https://github.com/cloudera/impala-tpcds-kit
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The testing used a 15TB scale-factor dataset. Each engine was assessed on a file format and 
compression that ensured the best possible performance and a fair, consistent comparison: Impala and 
Spark SQL on Apache Parquet with Snappy, and Hive-on-Tez on ORC with Zlib. The standard rigorous 
testing techniques (multiple runs, tuning, and so on) were used for each of the engines involved. 

Results: Multiple Users 
Our performance comparison focuses on multi-user results to simulate real-world workloads (as 
running a dedicated cluster per BI user is clearly impractical). We re-ran the same Interactive queries as 

in previous testing, running 10 users at the same time. To summarize the results: 

• Impala is the only engine that provides interactive responses for the Interactive query set with
an average of 12.8s, compared to the next nearest alternative with an average of over 1.5
minutes (7.6x slower).

• Impala delivers 6.8x – 15x higher throughput under concurrent load.

These results show that Impala is the only engine that consistently provides the interactive latency and 
concurrency needed for BI and SQL analytics, despite significant performance improvement efforts 
from Spark SQL with Tungsten as well as Hive-on-Tez with the Stinger initiative. We’re excited to see 
these results as more significant investments in performance and concurrency are still under away. 

http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
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The astute reader will note that the performance numbers are slower than what was reflected in the 
previous testing. We attribute that result to the fact that, as noted previously, the originally 

specified DECIMAL  types from the TPC-DS spec were included in the new round of testing, now that 

all the engines support DECIMAL (and DECIMAL  incurs more computational complexity 

than DOUBLE .) 

Running the Full 99 Queries Based on TPC-DS 
Next, we will demonstrate how to run all 99 queries derived from the TPC-DS spec on Impala. While 
most of the queries ran with no changes beyond the addition of simple partition filters, we modified 
some queries for language differences and additional optimizations, specifically: 
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The 99 queries that run on Impala are published in the benchmark kit here. As you can see in the above 
table, most of the changes are due to a small number of language features used in multiple queries. For 
a fair apples-to-apples comparison across engines, we excluded these 30 queries and also eliminated 
queries that could not run on Spark SQL and Hive-on-Tez, which left a total of 47 remaining queries. 

The chart below illustrates the breakdown and results of the same single-user buckets/queries as 
before, plus the 47 common queries. As noted previously, it’s uncommon for real-world deployments to 
run a cluster with a single BI user, so the multiuser results from the previous section are a better 
comparison.

https://github.com/cloudera/impala-tpcds-kit
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TPC-DS was designed to be representative of a traditional report-based workload, rather than the more 
common self-service and exploratory BI workloads you see in Hadoop today. The latter doesn’t have a 
canonical industry benchmark. When assessing for your environment it’s important to look at the 
characteristics of your workload that are best suited for particular systems. For Cloudera customers, the 
Cloudera Navigator Optimizer tool is designed to help with that assessment. 

Conclusion 
Cloudera’s vision for Impala is for it to become the most performant, compatible, and usable analytic 
database. These results, which demonstrate how to run all 99 queries derived from TPC-DS on Impala, 
is another important milestone on the way to its status as the leader and open standard for BI and SQL 
analytics on modern big data architecture. 

Choosing the right engine for the right job is very important. Despite Impala’s significant performance 
lead as an analytic database, Hive and Spark SQL continue to provide important capabilities for other 
use cases and users alongside Impala: 

• Hive is designed to make batch processing jobs like data preparation and ETL more accessible
than raw MapReduce via a SQL-like language. Most data served to BI users in Impala today is
prepared by ETL developers in Hive. Hive-on-Tez and Hive-on-Spark provide the same great
Hive capabilities, yet use Tez or Spark as the execution engines for incrementally faster
processing.

• Spark SQL is an API within Spark that is designed for Scala or Java developers to embed SQL
queries into their Spark programs. This API enables common data engineering like
aggregations, filters, joins, and so on to be simply expressed in SQL as part of a broader
procedural Spark application. For example, data engineers and data scientists commonly use
Spark for feature engineering and model development.

• Impala is modern MPP query engine purpose-built for Hadoop to provide BI and SQL analytics
at interactive latencies. For BI users, there’s a big difference between clicking on a report or
visualization and getting a response in seconds, versus having to wait minutes. Interactivity is
critical for BI users and that interactivity must be maintained as these tools scale to more users.

With multi-core joins and aggregates, dynamic partition pruning, and a variety of other performance 
enhancements coming up, we expect Impala’s performance lead to widen further. Be on the lookout for 
new performance testing results that showcase these enhancements in future posts. 

(As usual, we encourage you to independently verify these results by running your own benchmarks 

based on the open toolkit.) 

This benchmark is derived from the TPC-DS benchmark and, as such, is incomparable to published 
TPC-DS results. 

Devadutta Ghat is Senior Product Manager at Cloudera. 

https://blog.cloudera.com/blog/2015/11/introducing-cloudera-navigator-optimizer-for-optimal-sql-workload-efficiency-on-apache-hadoop/
https://github.com/cloudera/impala-tpcds-kit
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David Rorke is a Performance Engineer at Cloudera. 

Dileep Kumar is a Performance Engineer at Cloudera. 
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Support for Complex Types in Impala 
By	
  Alex	
  Behm	
  (Nov.	
  2015)	
  

The new support for complex types in Impala makes running analytic workloads considerably simpler. 

Impala 2.3 (shipping starting in Cloudera Enterprise 5.5) contains support for querying complex types in 

Apache Parquet tables, specifically ARRAY , MAP , and STRUCT s. This capability enables users to 
query against naturally nested data sets without having to perform ETL to flatten them. This feature 
provides a few major benefits, including: 

It removes additional ETL and data modeling work to flatten data sets. 

It makes queries easier by maintaining the natural relationship between nested data elements. 

It boosts performance by removing joins. 

This post is a gentle introduction to querying Impala tables with complex types; we will have follow-up 
posts that will go into more depth. Our goal is give you a quick understanding of Impala’s design 
philosophy and querying capabilities in Impala 2.3. We will focus on the SQL syntax extensions by 
presenting a series of simple SQL examples. 

The Impala team is excited about the first Impala release with complex types support, and we hope to 
get you excited, too! 

Design Goals 
The new SQL language extensions were designed with a few principles in mind: 

• The syntax should feel natural to the user, and should be a natural extension of SQL.

• It should also allow the full expressiveness of SQL with complex types.

• Common querying patterns can be expressed concisely.

• Queries can be executed efficiently.

Consequently, we came up with the following main ideas and extensions: 

• Nested fields within a STRUCT  are referenced via the familiar .  notation. 

• The collection types ARRAY  and MAP  are referenced in the FROM  clause, just like
conventional tables. This exposes the nested data as columns that can be referenced as usual.

http://blog.cloudera.com/blog/2015/11/cloudera-enterprise-5-5-is-now-generally-available/
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• Subqueries (including inline views) can reference nested ARRAY s and MAP s from tables in 

enclosing SELECT  blocks. This allows a SQL-in-SQL pattern where the data in nested 
collections can be filtered/joined/aggregated with the full expressiveness of SQL. 

Onward to the examples! 

Example Schema 
The following schema models a hypothetical customer data warehouse that contains data that might 
have been assembled from various data sources. There is routine customer data like name, address, 
orders, and so on, but also data about website and call-center interactions, all in a single table. The 
schema presents a customer-centric view of the data with the intent of performing customer-centric 
analyses. 

We have highlighted the complex types below; the column/field names should be more-or-less self-
explanatory. Their meaning will become clear in the examples to follow. 

CREATE TABLE customers ( 
 cid BIGINT, 
 name STRING, 
 mktsegment STRING, 
 address STRUCT< 

 city: STRING, 
 street: STRING, 
 street_number: INT, 
 zip: SMALLINT 

 >, 
 phone_numbers ARRAY<STRING>, 
 orders ARRAY<STRUCT< 

 oid: BIGINT, 
 status: STRING, 
 totalprice: DECIMAL(12,2), 
 order_date: STRING, 
 items: ARRAY<STRUCT< 

 iid: BIGINT, 
 name: STRING, 
 price: DECIMAL(12,2), 
 discount_perc: DECIMAL(2,2), 
 shipdate: STRING 

 >> 
 >>, 
 /* Keyed on web URL */ 
 web_visits MAP<STRING,STRUCT< 

 user_agent: STRING, 
 client_ip: STRING, 
 visit_date: STRING, 
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 duration_ms: INT 
 >>, 
 support_calls ARRAY<STRUCT< 

 agent_id: BIGINT, 
 call_date: STRING, 
 duration_ms: BIGINT, 
 issue_resolved: BOOLEAN, 
 agent_comment: STRING 

 >> 
) 
STORED AS PARQUET; 

Query A: Referencing STRUCT fields 
Find all customer names and their zip in the automotive market segment in San Francisco. 

SELECT name, address.zip FROM customers 
WHERE mktsegment = "AUTOMOTIVE" AND address.city = "SAN FRANCISCO" 

The nested fields of the STRUCT -typed address column are accessed via .  notation. 

Query B: Accessing a Nested Collection 
List all orders from 11/27/2015 with a total price over $1000. 

SELECT oid, status, totalprice, order_date FROM customers.orders 
WHERE order_date = "11-27-2015" and totalprice > 1000 

The .  notation in the FROM  clause is used to expose the nested orders  collection as a table that 

contains all orders of all customers. By referencing the nested orders  collection in 

the FROM  clause, we can use its fields anywhere a conventional column reference could appear. 
Notice that in this query we do not reference any of the top-level customer fields. 

Query C: Accessing a Deeply Nested Collection in a Single Path 
Compute the average item price over all items. 

SELECT AVG(price) FROM customers.orders.items 

Here the FROM  clause produces a table with all items of all orders of all customers. A single dotted 

path in the FROM  clause can traverse any number of collections, flattening all of them. 
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Query D: Using Relative Table References 
Compute the minimum and maximum duration of all successfully resolved support calls by market 
segment. 

SELECT MIN(duration_ms), MAX(duration_ms) FROM customers c, c.support_calls s 
WHERE s.issue_resolved = true 
GROUP BY c.mktsegment 

Unlike the previous examples, this query references top-level customer columns, as well as nested 

fields from the support_calls  collection. For every table or nested collection we wish to use 

fields/columns from, we need to establish a table alias in the FROM  clause. In this example, we have an 

alias c  that exposes the top-level columns cid , name , etc. and another alias s  that exposes the 

columns agent_id , order_date , duration_ms , and so on. You can think of the FROM  clause 
as a join between all customers and all support calls on the implicit is-nested-in relationship. This 

implicit join condition is expressed by virtue of the c.support_calls  reference that is relative to

the alias c . 

Query E: ANSI-92 Joins with Nested Collections 
List all customers and their orders from a specific zip code, including customers that have no orders. 

SELECT cid, name, oid, status, totalprice, order_date 
FROM customers c LEFT OUTER JOIN c.orders 
WHERE address.zip = 92309 

The LEFT OUTER JOIN  flattens the nested orders collection while preserving those customers that 

have no orders. The orders columns are set to NULL  for customers that have no orders. Notice that 

an ON -clause is not required here due to the implicit is-nested-in join condition. 

Query F: Pseudocolumns of Arrays 
List all phone numbers of a specific customer. 

SELECT c.cid, c.name, p.item, p.pos FROM customers c, c.phone_numbers p 
WHERE c.cid = 12345 

We use the pseudocolumn item  to refer to the column exposed by c.phone_numbers  because 

the element type of the phone_numbers  array is an anonymous scalar. The pos  pseudocolumn 

contains the ordinal position of item  in the corresponding array. 
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Query G: Pseudocolumns of Maps 
Count the number of distinct user agents that accessed a purchasing-related URL. 

SELECT COUNT(DISTINCT w.user_agent) FROM customers.web_visits w 
WHERE w.key LIKE "%purchase%" 

We use the pseudocolumn key  to refer to the key portion of the web_visits  map. Similarly, 

the value pseudocolumn can be used to access the value portion of the map (e.g., if the map’s value 
was an anonymous scalar type). 

Query H: Correlated Table References in Inline Views 
Count the number of pending orders and show their total value for every customer living in “Palo Alto”. 

SELECT cid, name, order_cnt, price_sum 
 FROM customers c, 

 (SELECT COUNT(*) order_cnt, SUM(totalprice) price_sum FROM c.orders 
   WHERE status = "PENDING") v 

 WHERE address.city = "PALO ALTO" 

This example shows how a relative reference to a nested collection c.orders  can be made inside an
inline view. We say the reference is correlated because it references a table alias from an enclosing 
query block, akin to conventional correlated subqueries in SQL. One way to think about the meaning of 

this query is that the query inside v  is evaluated for every customer c  due to the correlated 

reference. The result of each v  evaluation is then joined with the corresponding c  row. Such inline 
views can contain arbitrary SQL for operating on nested collections. Note that this query does per-

customer aggregation, but does not require a GROUP BY  clause. 

Query I: Correlated Table References in Subqueries 
Count the number of customers who have no orders but at least one web visit, grouped by market 
segment. 

SELECT mktsegment, COUNT(*) 
 FROM customers c 
 WHERE NOT EXISTS (SELECT oid FROM c.orders) 
   AND EXISTS (SELECT key from c.web_visits) 
 GROUP BY mktsegment 

This example shows two EXISTS  subqueries that have correlated table references to filter a 

customer based on evaluating some SQL over the nested orders  and web_visits  collections of 
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that particular customer. Note that in a flat schema, this query would require explicit and potentially 

expensive distributed joins between customers , orders , and web_visits . 

Query J: Deeply Nested Subqueries 
List all customers that have at least five orders that were ordered on a date where the customer also 
had at least one support call and web interaction. 

SELECT cid, name, cnt 
 FROM customers c, 

 (SELECT COUNT(oid) cnt FROM c.orders o 
 WHERE order_date IN (SELECT visit_date FROM c.web_visits) 

 AND order_date IN (SELECT call_date FROM c.support_calls) 
  HAVING cnt >= 5 
 ) v 

The purpose of this final example is to show a more complicated query with multiple nested subqueries 
that contain correlated table references. Subqueries can be arbitrarily nested just as in the conventional 
“flat” SQL. 

Useful Utility Commands 
When working with data that has complex types, you might find the following utility commands useful. 

• CREATE TABLE <tbl> LIKE PARQUET 'path_to_file' . See the documentation. 

• DESCRIBE <path> . See ARRAY type and MAP type. 

What’s Next 
While the core built-in language extensions are available in CDH 5.5 today, we are continuing to 
improve the complex types feature on several dimensions, and have the following items on the roadmap 
for future releases: 

• Support for Apache Avro

• Support for JSON files

• Syntactic sugar for even more concise aggregates over collections

• INSERT  into tables with complex types

• Builtin functions and user-defined functions that return and/or operate on complex types

• Performance improvements

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_complex_types.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala_array.html?scroll=array
http://www.cloudera.com/documentation/enterprise/latest/topics/impala_map.html?scroll=map
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This post was intended to be a short introduction and reference, so we inevitably omitted many 
interesting details. For more information and examples, try the following resources: 

• Impala Documentation (Complex Types)

• Presentation: “Nested Types in Impala“

• Presentation: “Data Modeling for Data Science: Simplify Your Workload with Complex Types in 
Impala“ 

Alex Behm is a Software Engineer at Cloudera, working on the Impala team. 

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_complex_types.html
http://www.slideshare.net/cloudera/nested-types-in-impala-55344174
http://www.slideshare.net/cloudera/data-modeling-for-data-science-simplify-your-workload-with-complex-types-in-impala
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How-to: Use Impala with Kudu 
By	
  Misty	
  Stanley-­‐Jones	
  (Nov.	
  2015)	
  

Learn the details about using Impala alongside Kudu. 

Kudu (currently in beta), the new storage layer for the Apache Hadoop ecosystem, is tightly integrated 
with Impala, allowing you to insert, query, update, and delete data from Kudu tablets using Impala’s SQL 
syntax, as an alternative to using the Kudu APIs to build a custom Kudu application. In addition, you can 
use JDBC or ODBC to connect existing or new applications written in any language, framework, or 
business intelligence tool to your Kudu data, using Impala as the broker. This integration relies on 
features that released versions of Impala do not have yet, as of Impala 2.3, which is expected to ship in 
CDH 5.5. In the interim, you need to install a fork of Impala called Impala_Kudu. 

In this post, you will learn about the various ways to create and partition tables as well as currently 
supported SQL operators. This post assumes a successful install of the Impala_Kudu package via 

Cloudera Manager or command line; see the docs for instructions. Note these prerequisites: 

• Impala_Kudu depends upon CDH 5.4 or later. To use Cloudera Manager with Impala_Kudu, you
need Cloudera Manager 5.4.3 or later. Cloudera Manager 5.4.7 is recommended, as it adds
support for collecting metrics from Kudu.

• If you have an existing Impala instance on your cluster, you can install Impala_Kudu alongside
the existing Impala instance if you use parcels. The new instance does not share configurations
with the existing instance and is completely independent. A script is provided to automate this
type of installation.

• It is especially important that the cluster has adequate unreserved RAM for the Impala_Kudu
instance.

• Consider shutting down the original Impala service when testing Impala_Kudu if you want to be
sure it is not impacted.

• Before installing Impala_Kudu, you must have already installed and configured services for
HDFS, Apache Hive, and Kudu. You may need Apache HBase, YARN, Apache Sentry, and
Apache ZooKeeper services as well.

Using Impala with Kudu 
Neither Kudu nor Impala need special configuration for you to use the Impala Shell or the Impala API to 
insert, update, delete, or query Kudu data using Impala. However, you do need to create a mapping 

http://getkudu.io
http://www.cloudera.com/documentation/betas/kudu/latest/topics/kudu_installation.html
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between the Impala and Kudu tables. Kudu provides the Impala query to map to an existing Kudu table 
in the web UI. 

• Be sure you are using the impala-shell binary provided by the Impala_Kudu package, rather
than the default CDH Impala binary. The following shows how to verify this using the

alternatives command on a RHEL 6 host. Do not copy and paste the alternatives --
set  command directly, because the file names are likely to differ.

$ sudo alternatives --display impala-shell 

impala-shell - status is auto. link currently points to  
/opt/cloudera/parcels/CDH-5.4.6-1.cdh5.4.6.p0.1007/bin/impala-shell  
/opt/cloudera/parcels/CDH-5.4.6-1.cdh5.4.6.p0.1007/bin/impala-shell - 
priority 10  
/opt/cloudera/parcels/IMPALA_KUDU-2.3.0-1.cdh5.4.6.p0.119/bin/impala-
shell - priority 5  
Current `best' version is /opt/cloudera/parcels/CDH-5.4.0-
1.cdh5.6.0.p0.1007/bin/impala-shell.

$ sudo alternatives --set impala-shell 
/opt/cloudera/parcels/IMPALA_KUDU-2.3.0-1.cdh5.4.6.p0.119/bin/impala-
shell 

• Start Impala Shell using the impala-shell  command. By default, impala-
shell attempts to connect to the Impala daemon on localhost on port 21000. To connect to

a different host, use the -i <host:port>  option. To automatically connect to a specific

Impala database, use the -d <database>  option. For instance, if all your Kudu tables are in

Impala in the database impala_kudu, use -d impala_kudu  to use this database.

• To quit the Impala Shell, use the following command: quit;

Internal and External Impala Tables 
When creating a new Kudu table using Impala, you can create the table as an internal table or an 
external table. 

• Internal: An internal table (created by CREATE TABLE ) is managed by Impala, and can be
dropped by Impala. When you create a new table using Impala, it is generally a internal table.

• External: An external table (created by CREATE EXTERNAL TABLE ) is not managed by
Impala, and dropping such a table does not drop the table from its source location (here, Kudu).
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Instead, it only removes the mapping between Impala and Kudu. This is the mode used in the 
syntax provided by Kudu for mapping an existing table to Impala. 

See the Impala documentation for more information about internal and external tables. 

Querying an Existing Kudu Table In Impala 
• Go to http://kudu-master.example.com:8051/tables/, where kudu-master.example.com is the

address of your Kudu master.

• Click the table ID link for the relevant table.

• Scroll to the bottom of the page, or search for the text Impala CREATE TABLE  statement. 
Copy the entire statement.

• Paste the statement into Impala Shell. Impala now has a mapping to your Kudu table.

Creating a New Kudu Table From Impala 
Creating a new table in Kudu from Impala is similar to mapping an existing Kudu table to an Impala 

table, except that you need to write the CREATE  statement yourself. Use the following example as a 
guideline. Impala first creates the table, then creates the mapping. 

This example does not use a partitioning schema. However, you will almost always want to define a 
schema to pre-split your table. 

CREATE TABLE `my_first_table` ( 
`id` BIGINT, 
`name` STRING 
) 
TBLPROPERTIES( 
  'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
  'kudu.table_name' = 'my_first_table', 
  'kudu.master_addresses' = 'kudu-master.example.com:7051', 
  'kudu.key_columns' = 'id' 
); 

In the CREATE TABLE  statement, the columns that comprise the primary key must be listed first. 

Additionally, primary key columns are implicitly marked NOT NULL . 

The following table properties are required, and the kudu.key_columns  property must contain at 
least one column. 

• storage_handler : the mechanism used by Impala to determine the type of data source. For
Kudu tables, this must be com.cloudera.kudu.hive.KuduStorageHandler.

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_tables.html
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• kudu.table_name : the name of the table that Impala will create (or map to) in Kudu

• kudu.master_addresses : the list of Kudu masters with which Impala should communicate

• kudu.key_columns : the comma-separated list of primary key columns, whose contents
should not be nullable 

CREATE TABLE AS SELECT. You can create a table by querying any other table or tables in Impala, 

using a CREATE TABLE AS SELECT query. 

The following example imports all rows from an existing table old_table into a Kudu table new_table. 
The columns in new_table will have the same names and types as the columns in old_table, but you 

need to populate the kudu.key_columns  property. In this example, the primary key columns 
are ts and name. 

CREATE TABLE new_table AS 
SELECT * FROM old_table 
TBLPROPERTIES( 
  'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
  'kudu.table_name' = 'new_table', 
  'kudu.master_addresses' = 'kudu-master.example.com:7051', 
  'kudu.key_columns' = 'ts, name' 
); 

You can refine the SELECT  statement to only match the rows and columns you want to be inserted 

into the new table. You can also rename the columns by using syntax like SELECT  name as 
new_name. 

Partitioning Tables 
Tables are partitioned into tablets according to a partition schema on the primary key columns. Each 
tablet is served by at least one tablet server. Ideally, a table should be split into tablets that are 
distributed across a number of tablet servers to maximize parallel operations. The details of the 
partitioning schema you use will depend entirely on the type of data you store and how you access it. 

Kudu currently has no mechanism for splitting or merging tablets after the table has been created. Until 
this feature has been implemented, you must provide a partition schema for your table when you create 
it. When designing your tables, consider using primary keys that will allow you to partition your table 
into tablets which grow at similar rates. 
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You can partition your table using Impala’s DISTRIBUTE BY  keyword, which supports distribution 

by RANGE  or HASH . The partition scheme can contain zero or more HASH  definitions, followed by an 

optional RANGE  definition. The RANGE  definition can refer to one or more primary key columns. 

Examples of basic and advanced partitioning are shown below. Note: Impala keywords, such as group,
are enclosed by back-tick characters when they are used as identifiers, rather than as keywords. 

Basic Partitioning 
DISTRIBUTE BY RANGE . You can specify split rows for one or more primary key columns that 

contain integer or string values. Range partitioning in Kudu allows splitting a table based on the 
lexicographic order of its primary keys. This allows you to balance parallelism in writes with scan 
efficiency. 

The split row does not need to exist. It defines an exclusive bound in the form of: 

(START_KEY, SplitRow), [SplitRow, STOP_KEY) 
| 
In other words, the split row, if it exists, is included in the tablet after the split point. For instance, if you 
specify a split row abc, a row abca would be in the second tablet, while a row abb would be in the first. 

Suppose you have a table that has columns state, name, and purchase_count. The following example 
creates 50 tablets, one per US state. Note:  If you partition by range on a column whose values are 
monotonically increasing, the last tablet will grow much larger than the others. Additionally, all data 
being inserted will be written to a single tablet at a time, limiting the scalability of data ingest. In that 
case, consider distributing by HASH instead of, or in addition to, RANGE. 

CREATE TABLE customers ( 
  state STRING, 
  name STRING, 
  purchase_count int32, 
) DISTRIBUTE BY RANGE(state) 
SPLIT ROWS(('al'), ('ak'), ('ar'), .., ('wv'), ('wy')) 
TBLPROPERTIES( 
'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
'kudu.table_name' = 'customers', 
'kudu.master_addresses' = 'kudu-master.example.com:7051', 
'kudu.key_columns' = 'state, name' 
); 

DISTRIBUTE BY HASH . Instead of distributing by an explicit range, or in combination with range 
distribution, you can distribute into a specific number of “buckets” by hash. You specify the primary key 
columns you want to partition by, and the number of buckets you want to use. Rows are distributed by 
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hashing the specified key columns. Assuming that the values being hashed do not themselves exhibit 
significant skew, this will serve to distribute the data evenly across buckets. 

You can specify multiple definitions, and you can specify definitions which use compound primary keys. 
However, one column cannot be mentioned in multiple hash definitions. Consider two columns, a and b: 

• HASH(a), HASH(b) — will succeed

• HASH(a,b) — will succeed

• HASH(a), HASH(a,b) — will fail

Note: DISTRIBUTE BY HASH  with no column specified is a shortcut to create the desired number of 
buckets by hashing all primary key columns. 

Hash partitioning is a reasonable approach if primary key values are evenly distributed in their domain 
and no data skew is apparent, such as timestamps or serial IDs. 

The following example creates 16 tablets by hashing the id column. A maximum of 16 tablets can be 
written to in parallel. In this example, a query for a range of sku values is likely to need to read from all 
16 tablets, so this may not be the optimum schema for this table. See Advanced Partitioning for an 
extended example. 

CREATE TABLE cust_behavior ( 
  id BIGINT, 
  sku STRING, 
  salary STRING, 
  edu_level INT, 
  usergender STRING, 
  `group` STRING, 
  city STRING, 
  postcode STRING, 
  last_purchase_price FLOAT, 
  last_purchase_date BIGINT, 
  category STRING, 
  rating INT, 
  fulfilled_date BIGINT 
) 
DISTRIBUTE BY HASH (id) INTO 16 BUCKETS 
TBLPROPERTIES( 
'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
'kudu.table_name' = 'cust_behavior', 
'kudu.master_addresses' = 'kudu-master.example.com:7051', 
'kudu.key_columns' = 'id, sku' 
); 
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Advanced Partitioning 
You can use zero or more HASH  definitions, followed by zero or one RANGE  definitions to partition a 
table. Each definition can encompass one or more columns. While every possible distribution schema is 
out of the scope of this document, a few demonstrations follow. 

DISTRIBUTE BY RANGE  Using Compound Split Rows. This example creates 100 tablets, two for 
each US state. Per state, the first tablet holds names starting with characters before m, and the second 
tablet holds names starting with m-z. At least 50 tablets (and up to 100) can be written to in parallel. A 
query for a range of names in a given state is likely to only need to read from one tablet, while a query 
for a range of names across every state will likely only read from 50 tablets. 

CREATE TABLE customers ( 
  state STRING, 
  name STRING, 
  purchase_count int32, 
) DISTRIBUTE BY RANGE(state, name) 
SPLIT ROWS(('al', ''), ('al', 'm'), ('ak', ''), ('ak', 'm'), 
  .., 
  ('wy', ''), ('wy', 'm')) 
TBLPROPERTIES( 
'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
'kudu.table_name' = 'customers', 
'kudu.master_addresses' = 'kudu-master.example.com:7051', 
'kudu.key_columns' = 'state, name' 
); 

DISTRIBUTE BY HASH and RANGE . Let’s go back to the hashing example above. If you often 
query for a range of sku values, you can optimize the example by combining hash partitioning with 

range partitioning. The following example still creates 16 tablets, by first hashing the id  column into 4 
buckets, and then applying range partitioning to split each bucket into four tablets, based upon the 
value of the skustring. At least four tablets (and possibly up to 16) can be written to in parallel, and 
when you query for a contiguous range of sku values, you have a good chance of only needing to read 
from 1/4 of the tablets to fulfill the query. 

CREATE TABLE cust_behavior ( 
  id BIGINT, 
  sku STRING, 
  salary STRING, 
  edu_level INT, 
  usergender STRING, 
  `group` STRING, 
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  city STRING, 
  postcode STRING, 
  last_purchase_price FLOAT, 
  last_purchase_date BIGINT, 
  category STRING, 
  rating INT, 
  fulfilled_date BIGINT 
) 
DISTRIBUTE BY HASH (id) INTO 4 BUCKETS, 
RANGE (sku) SPLIT ROWS(('g'), ('o'), ('u')) 
TBLPROPERTIES( 
'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
'kudu.table_name' = 'cust_behavior', 
'kudu.master_addresses' = 'kudu-master.example.com:7051', 
'kudu.key_columns' = 'id, sku' 
);   

Multiple DISTRIBUTE BY HASH  Definitions. Again expanding the example above, suppose that the 
query pattern will be unpredictable, but you want to maximize parallelism of writes. You can achieve 
even distribution across the entire primary key by hashing on both primary key columns. 

CREATE TABLE cust_behavior ( 
  id BIGINT, 
  sku STRING, 
  salary STRING, 
  edu_level INT, 
  usergender STRING, 
  `group` STRING, 
  city STRING, 
  postcode STRING, 
  last_purchase_price FLOAT, 
  last_purchase_date BIGINT, 
  category STRING, 
  rating INT, 
  fulfilled_date BIGINT 
) 
DISTRIBUTE BY HASH (id) INTO 4 BUCKETS, HASH (sku) INTO 4 BUCKETS 
TBLPROPERTIES( 
'storage_handler' = 'com.cloudera.kudu.hive.KuduStorageHandler', 
'kudu.table_name' = 'cust_behavior', 
'kudu.master_addresses' = 'kudu-master.example.com:7051', 
'kudu.key_columns' = 'id, sku' 
); 
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The example creates 16 buckets. You could also use HASH (id, sku) INTO 16 BUCKETS . 
However, a scan for sku values would almost always impact all 16 buckets, rather than possibly being 
limited to 4. 

Impala Database Containment Model 
Impala uses a database containment model. You can create a table within a specific scope, referred to 

as a database. To create the database, use a CREATE DATABASE  statement. To use the database for 

further Impala operations such as CREATE TABLE , use the USE  statement. For example, to create a 
table in a database called impala_kudu, use the following statements: 

CREATE DATABASE impala_kudu; 
USE impala_kudu; 
CREATE TABLE my_first_table ( 
...   
The my_first_table table is created within the impala_kudu database. To refer to this database in the 
future, without using a specific USE statement, you can refer to the table 
using<database>:<table> syntax. For example, to specify the my_first_table table in 
database impala_kudu, as opposed to any other table with the same name in another database, refer to 
the table as impala_kudu:my_first_table. This also applies to INSERT, UPDATE, DELETE, 
and DROP statements. 

(Warning: As of this writing, Kudu does not encode the Impala database into the table name in any way. 
This means that even though you can create Kudu tables within Impala databases, the actual Kudu 
tables need to be unique within Kudu. For example, if you 
create database_1:my_kudu_table and database_2:my_kudu_table, you will have a naming collision within 
Kudu, even though this would not cause a problem in Impala.) 

Impala Keywords Not Support for Kudu Tables 
The following Impala keywords are not supported for Kudu tables: 

•   PARTITIONED
•   STORED AS
•   LOCATION
• ROWFORMAT

Understanding SQL Operators and Kudu 
If your query includes the operators =, <=, or >=, Kudu evaluates the condition directly and only returns 
the relevant results. Kudu does not yet support <, >, !=, or any other operator not listed. 
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For these unsupported operations, Kudu returns all results regardless of the condition, and Impala 
performs the filtering. Since Impala must receive a larger amount of data from Kudu, these operations 
are less efficient. In some cases, creating and periodically updating materialized views may be the right 
solution to work around these inefficiencies. 

Inserting a Row 
The syntax for inserting one or more rows using Impala is shown below. 

INSERT INTO my_first_table VALUES (99, "sarah"); 
INSERT INTO my_first_table VALUES (1, "john"), (2, "jane"), (3, "jim"); 

The primary key must not be null. 

Inserting in Bulk 
When insert in bulk, there are at least three common choices. Each may have advantages and 
disadvantages, depending on your data and circumstances. 

• Multiple Single INSERT  statements: This approach has the advantage of being easy to
understand and implement. This approach is likely to be inefficient because Impala has a high
query start-up cost compared to Kudu’s insertion performance. This will lead to relatively high
latency and poor throughput.

• Single INSERT statement with multiple VALUES subclauses: If you include more than 1024 

VALUES statements, Impala batches them into groups of 1024 (or the value
of batch_size) before sending the requests to Kudu. This approach may perform slightly better 

than multiple sequential INSERT statements by amortizing the query start-up penalties on the 

Impala side. To set the batch size for the current Impala Shell session, use this syntax: set 
batch_size=10000; . Note: Increasing the Impala batch size causes Impala to use more 

memory. You should verify the impact on your cluster and tune accordingly.)
The “batch insert’ approach that usually performs best, from the standpoint of both Impala and 

Kudu, is usually to import the data using a SELECT FROM subclause in Impala.

• If your data is not already in Impala, one strategy is to import it from a text file, such as a TSV or 
CSV file.

• Create the Kudu table, being mindful that the columns designated as primary keys cannot have 
null values. 

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_txtfile.html
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• Insert values into the Kudu table by querying the table containing the original data, as in the
following example:

INSERT INTO my_kudu_table
SELECT * FROM legacy_data_import_table;

• Ingest using the C++ or Java API: In many cases, the appropriate ingest path is to use the C++
or Java API to insert directly into Kudu tables. Unlike other Impala tables, data inserted into
Kudu tables via the API becomes available for query in Impala without the need for

any INVALIDATE METADATA  statements or other statements needed for other Impala
storage types.

INSERT and the IGNORE Keyword 
Normally, if you try to insert a row that has already been inserted, the insertion will fail because the 
primary key would be duplicated (see “Failures During INSERT, UPDATE, and DELETE Operations”.) If 

an insert fails part of the way through, you can re-run the insert, using the IGNORE  keyword, which will 
ignore only those errors returned from Kudu indicating a duplicate key. 

The first example will cause an error if a row with the primary key 99  already exists. The second 
example will still not insert the row, but will ignore any error and continue on to the next SQL statement. 

INSERT INTO my_kudu_table 
  SELECT * FROM legacy_data_import_table; 

Updating a Row 
The syntax for updating one or more rows using Impala is shown below. 

UPDATE my_first_table SET name="bob" where id = 3; 

You cannot change or null the primary key value. (Important: The UPDATE  statement only works in 
Impala when the underlying data source is Kudu.) 

Updating in Bulk 
You can update in bulk using the same approaches outlined in “Inserting in Bulk” above. 

UPDATE and the IGNORE Keyword 
Similar to INSERT and the IGNORE Keyword, you can use the IGNORE  operation to ignore 

an UPDATE  which would otherwise fail. For instance, a row may be deleted while you are attempting to 
update it. In Impala, this would cause an error. The IGNORE keyword causes the error to be ignored. 

http://getkudu.io/docs/kudu_impala_integration.html#insert_ignore
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DELETE IGNORE FROM my_first_table WHERE id < 3; 

Deleting a Row 
You can delete Kudu rows in near real time using Impala. You can even use more complex joins when 
deleting. 

DELETE FROM my_first_table WHERE id < 3;   
DELETE c FROM my_second_table c, stock_symbols s WHERE c.name = s.symbol; 

Important: The DELETE statement only works in Impala when the underlying data source is Kudu. 

Deleting in Bulk 
You can delete in bulk using the same approaches outlined in “Inserting in Bulk” above. 

DELETE and the IGNORE Keyword 
Similar to INSERT and the IGNORE Keyword, you can use the IGNORE  operation to ignore 

an DELETE  which would otherwise fail. For instance, a row may be deleted by another process while 

you are attempting to delete it. In Impala, this would cause an error. The  IGNORE  keyword causes the 
error to be ignored. 

DELETE IGNORE FROM my_first_table WHERE id > 3; 

Failures During INSERT, UPDATE, and DELETE Operations 
INSERT , UPDATE , and DELETE  statements cannot be considered transactional as a whole. If one of 

these operations fails part of the way through, the keys may have already been created (in the case 

of INSERT ) or the records may have already been modified or removed by another process (in the 

case of UPDATE or DELETE ). You should design your application with this in mind. See INSERT and 
the IGNORE Keyword. 

Altering Table Properties 
You can change Impala’s metadata relating to a given Kudu table by altering the table’s properties. 
These properties include the table name, the list of Kudu master addresses, and whether the table is 
managed by Impala (internal) or externally. You cannot modify a table’s split rows after table creation. 
(Important: Altering table properties only changes Impala’s metadata about the table, not the 
underlying table itself. These statements do not modify any Kudu data.) 

http://getkudu.io/docs/kudu_impala_integration.html#insert_ignore
http://getkudu.io/docs/kudu_impala_integration.html#insert_ignore
http://getkudu.io/docs/kudu_impala_integration.html#insert_ignore
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Rename a Table 

ALTER TABLE my_table RENAME TO my_new_table; 

Change the Kudu Master Addresses 

ALTER TABLE my_table SET TBLPROPERTIES('kudu.master_addresses' = 'kudu-
original-master.example.com:7051,kudu-new-master.example.com:7051'); 

Change an Internally-Managed Table to External 

ALTER TABLE my_table SET TBLPROPERTIES('EXTERNAL' = 'TRUE'); 

Dropping a Table 
If the table was created as an internal table in Impala, using CREATE TABLE , the standard DROP
TABLE  syntax drops the underlying Kudu table and all its data. If the table was created as an external 

table, using CREATE EXTERNAL TABLE , the mapping between Impala and Kudu is dropped, but the 
Kudu table is left intact, with all its data. To change an external table to internal, or vice versa, 
see Altering Table Properties. 

DROP TABLE my_first_table; 

Next Steps 
The examples above have only explored a fraction of what you can do with Impala Shell. Read about 
Impala internals or learn how to contribute to Impala on the Impala Wiki. 

Misty Stanley-Jones is a Technical Writer at Cloudera, and an Apache HBase committer. 

http://getkudu.io/docs/kudu_impala_integration.html#_altering_table_properties
https://github.com/cloudera/Impala/wiki
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Recent Impala testing demonstrates its scalability to a large number of concurrent users. 

Impala, the open source MPP query engine designed for high-concurrency SQL over Apache Hadoop, 
has seen tremendous adoption across enterprises in industries such as financial services, telecom, 
healthcare, retail, gaming, government, and advertising. Impala has unlocked the ability to use business 
intelligence (BI) applications on Hadoop; these applications support critical business needs such as 
data discovery, operational dashboards, and reporting. For example, one customer has proven that 
Impala scales to 80 queries/second, supporting 1,000+ web dashboard end-users with sub-second 
response time. Clearly, BI applications represent a good fit for Impala, and customers can support more 
users simply by enlarging their clusters. 

Cloudera’s previous testing already established that Impala is the clear winner among analytic SQL-on-
Hadoop alternatives, and we will provide additional support for this claim soon. We also showed that 

Impala scales across cluster sizes for stand-alone queries. Future roadmap also aims to deliver 
significant performance improvements. 

That said, there is scant public data about how Impala scales across a large range of concurrency and 
cluster sizes. The results described in this post aim to close that knowledge gap by demonstrating that 
Impala clusters of 5, 10, 20, 40, and 80 nodes will support an increasing number of users at interactive 
latency. 

To summarize the findings: 

• Enlarging the cluster proportionally increases the users supported and the system throughput.

• Once the cluster saturates, adding more users leads to proportional increase in query latency.

• Scaling is bound by CPU, memory capacity, and workload skew.

The following describes the technical details surrounding our results. We’ll also cover the relevant 
metrics, desired behavior, and configurations required for concurrency scalability for analytic SQL-on-
Hadoop. As always, we strongly encourage you to do your own testing to confirm these results, and all 
the tools you need to do so have been provided. 

http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/
http://blog.cloudera.com/blog/2015/07/whats-next-for-impala-more-reliability-usability-and-performance-at-even-greater-scale/
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Test Setup 

Cluster 
For this round of testing, we used a 5-rack, 80-node cluster. To investigate behavior across different 
cluster sizes, we divided these machines into clusters of 5, 10, 20, 40, and 80 nodes. Each node has 
hardware considered typical for Hadoop: 

• CPU: Dual-socket, 12-core, 24-threads Intel Xeon E5-2630L 2.00GHz processor

• Disk: 12 Hewlett-Packard spinning SATA disks with 7200 RPM and 2TB each

• Memory: 64GB RAM (below what Cloudera recommends to demonstrate that Impala scales out 
well even with moderate resources per node)

• Network: 10 Gbps Ethernet 

The cluster runs on RHEL 6.4 with CDH 5.3.3 and Impala 2.1.3, which were the newest CDH and Impala 
versions available when this project began. Every worker node runs an Impala Daemon and a HDFS 
DataNode. 

Workload 
The workload involved is derived from TPC-DS. Although this workload is not an ideal match for self-
service BI and analytics, and more closely mimics reporting use cases, TPC-DS is publicly available and 
thus allows others to reproduce our results. 

• Data schema: Generated by TPC-DS data generator

• Data size: 15TB (scale factor 15,000 in TPC-DS data generator)

• Data format: Apache Parquet file, Snappy compression

• Queries: The “Interactive” queries from our previous blog posts about Impala performance. (See 

our post from May 2013 for details and Github for the queries themselves.)

• Load: Reproduces the spirit of the TPC-DS “throughput run”

• A configurable number of concurrent, continuous query streams

• Each stream submits queries one after another

• Different streams run the set of all queries once in randomized order 

Each query stream corresponds to a user. This workload mimics a scenario where many concurrent 
users continuously submit queries in random order, one after another. This concurrency model is 

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_prereqs1.html#prereqs
http://www.tpc.org/tpcds/
http://blog.cloudera.com/blog/2013/05/cloudera-impala-1-0-its-here-its-real-its-already-the-standard-for-sql-on-hadoop/
https://github.com/cloudera/impala-tpcds-kit
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actually more demanding than is typical in real life, where there is usually a gap between successive 
queries as users spend some time thinking about query output before writing a new query. 

We intentionally constrained the query set to interactive queries for two reasons: 

An analysis of customer workloads across industry verticals indicates that interactive queries make up 
more than 90% of queries for analytic SQL-on-Hadoop. Thus, concurrency scale will be driven by the 
concurrency level of interactive queries. 

• Each of these interactive queries touches 80GB of data on average after partition pruning.
These queries are non-trivial.

• We recorded the average of three repeated measurements for each concurrency setting.

Performance Goals 
A system with good concurrency scalability should have the following characteristics: 

• Uses all available hardware resources: As more users access the cluster, query throughput
maximizes at a saturation point where some cluster hardware resource is fully utilized.

• High performance: At saturation point, query latency is low and throughput is high.

• Scalable in the number of users: Adding users after saturation leads to proportionally increasing
latency without compromising throughput.

• Scalable in cluster size: Adding hardware to the system leads to proportionally increasing
throughput and decreasing latency.

Results 

Users Supported Scales with Cluster Size 
For each cluster size, we continuously added more users until the latency increased beyond a set 
threshold of “interactive latency.” For each cluster size, we documented the number of users that makes 
latency cross the threshold. 

http://vldb.org/pvldb/vol5/p1802_yanpeichen_vldb2012.pdf
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As you can see, for a given threshold, increasing the cluster size results in increasing the number of 
users supported. The general shape of the graphs is identical for different thresholds. For a fixed size, a 
cluster can add more users with increasing latency, allowing the cluster to support many users before 
exceeding a given threshold. 

This result is impressive. It supports the contention that to maintain low query latency while adding 
more users, you would simply add more nodes to the cluster. 

Saturation Throughput Scales with Cluster Size 
Cluster saturation throughput is another important performance metric. When there is a large number 
of users (the cluster is saturated), you want larger clusters to run through the queries proportionally 
faster. The results indicate that this is indeed the case with Impala. 
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Again, the results indicate that increasing the cluster size will allow you to increase the cluster 
saturation throughput. 

Cluster Behavior as More Users are Added 
A different view on the data allows one to identify distinct cluster operating regions as more users are 
added. The results below show query latency on the 80-node cluster as we progressively add more 
users. 
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There is initially a region where the cluster is under-utilized, and query latency remains constant even 
as we add more users. At the extreme right of the graph, there is a saturation region, where adding 
more users results in proportionally longer query latency. There is also a transition region in between. 

The shape of the graph on the right side is important because it indicates gracefully degrading query 
latency. So although fluctuations in real-life workloads can often take the cluster beyond saturation, in 
those conditions, query latencies would not become pathologically high. 

Performance Limited by CPU and Memory Capacity 
The cluster is both CPU and memory bound. Thus, Impala is efficiently utilizing the available hardware 
resources. 

The graph below on the left shows the CPU utilization across the 40-nodes cluster when we’re running 
40 concurrent users or query streams, when the cluster is saturated. The cluster is CPU bound on 
several nodes that have 90% or higher CPU utilization. The variation in CPU utilization is due to 
execution skew (more about that below). 

The graph on the right shows the memory utilization. It’s more uniform across the cluster, and caps at 
around 90% utilized. 
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Why Admission Control is Necessary 
Previously you saw that when we add more users to a cluster, we get gracefully degrading query 

latency. We achieve this behavior by configuring Admission Control. 

Impala’s Admission Control feature maintains the cluster in an efficient and not-overwhelmed state by 
limiting the number of queries that can run at the same time. When users submit queries beyond the 
limit, the cluster puts the additional queries in a waiting queue. More users means a longer queue and 
longer waiting time, but the actual “running time” is the same. That is how we achieve graceful latency 
degradation. 

The following is a conservative heuristic to set the admission control limit. It requires running typical 
queries in the workload in a stand-alone fashion, then finding the per-node peak memory use from the 
query profiles. 

Set admission control limit =  
(RAM size – headroom for OS and other CDH services) / 
(max per-node peak memory use across all queries) * 
(safety factor < 1) 

We used 5GB for headroom for OS and other CDH services, and a safety factor value of 0.7. 

On larger clusters, the same queries result in lower values for the per-node peak memory use, and this 
heuristic will give higher limits for Admission Control. Again, this heuristic is  conservative. 

http://www.cloudera.com/documentation/enterprise/latest/topics/impala_admission.html
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Scaling Overhead and Execution Skew 
A query engine that scales simplifies cluster planning and operations: To add more users while 
maintaining query latency, just add more nodes. 

However, the behavior is not ideal. In our tests, increasing the cluster size Nx resulted in below-

Nx increase in the number of users supported at the same latency.

One reason for this scaling overhead is skew in how the workload is executed. This skew is visible in the 
CPU utilization graph above, where some nodes are CPU-bound while others have spare CPU capacity. 

The graph below shows what happens when we vary the cluster size. On small clusters, there is almost 
no gap between maximum and minimum CPU utilization across the cluster. On large clusters, there is a 
large gap. The overall performance is bottlenecked on the slowest node. The bigger the gap, the bigger 
the skew, and the bigger the scaling overhead. 

The primary source of execution skew occurs during the fact table scan HDFS operator. It arises out of 
uneven data placement across different nodes. 

The fact table is partitioned by date. Many of the queries filter by date ranges in a month, so all but 30 
partitions will be pruned. Data in partitions are stored as Parquet files, each a 256MB granularity HDFS 
block. Most partitions have three blocks, and the average is 4.7 blocks per partition (see graph below). 
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The net effect is that after partition pruning, there will be around 30 partitions remaining and 90-150 
Parquet blocks that will be scanned across the cluster. On an 80-node cluster, most nodes will scan one 
or two blocks, and some nodes could end up scanning three or more blocks or zero blocks. This is a 
source of heavy skew. Smaller clusters would have on average more blocks per node, and statistically 
smooth out the node-to-node variation. 

We verified the behavior by examining the query profiles. This skew impacts all queries, and propagates 
through the rest of the query execution after the fact table scan HDFS operator. 

Summary and Recommendations 
For customers running BI applications, a good analytic SQL-on-Hadoop backend should have the 
following properties: 

• Scales better to large clusters. As datasets and the number of users grow, clusters will also
grow. Solutions that can prove themselves at large cluster sizes are better.

• Achieves fast, interactive latency. This enables human specialists to explore the data, discover
new ideas, then validate those ideas, all without waiting and losing their train of thought.

• Makes efficient use of hardware – CPU as well as memory. One can always buy bigger
machines and build larger clusters. However, an efficient solution will support more users from
the hardware available.
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• Simplifies planning. Adding more users should not require a complete redesign of the system, or
migrate wholesale to a different platform. Supporting more users should be a simple matter of
adding more nodes to your cluster.

The results presented here show that Impala achieves the above goals. In these tests, we found that 
Impala shows good scaling behavior, with increasing cluster sizes being able to support increasing 
throughput and number of users. For this workload, Impala performance is limited by available CPU and 
memory capacity, and skew in how data is placed across the cluster. These results fall in line with the 
scaling behavior that most customers see. 

We also have some general recommendations for analytic SQL-on-Hadoop software and hardware 
vendors: 

• Concurrency scale should get more attention. BI use cases highlight the need to design for a
large number of users. The technical challenges at high concurrency, such as load balancing to
address execution skew, are only starting to be discovered.

• Admission Control is an important design point. Our heuristic is based on the number of
queries, and would be less effective when some queries require a lot more processing than
others and are a lot “bigger” than others.

• Analytic SQL-on-Hadoop engines should prioritize CPU efficiency. Each user adds incremental
CPU demands, so an engine should aim to execute each query with as little CPU work as
possible.

• Hardware needs memory as well as CPU capacity. CPU capacity is necessary as just discussed.
Memory capacity is also needed, because data sizes and working sets will increase over time.

• Overall, concurrency and cluster scalability involves an interplay between hardware properties,
software configurations, and the workload to be serviced.

We have seen only the tip of the iceberg for this complex problem space. Look for our future posts for 
more information! 
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How-to: Prepare Unstructured Data in Impala for Analysis 
By	
  John	
  Russell	
  (Sept.	
  2015)	
  

Learn how to build an Impala table around data that comes from non-Impala, or even non-SQL, sources. 

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might 
encounter situations where you have data files (particularly in Apache Parquet format) where you do 
not know the precise table definition. This tutorial shows how you can build an Impala table around data 
that comes from non-Impala or even non-SQL sources, where you do not have control of the table 
layout and might not be familiar with the characteristics of the data. 

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through 

April 2008. (See the details on the 2009 ASA Data Expo web site.) You can also see the explanations of 
the columns; for purposes of this exercise, wait until after following the tutorial before examining the 
schema, to better simulate a real-life situation where you cannot rely on assumptions and assertions 
about the ranges and representations of data values. 

Wrangling the Data 
First, we download and unpack the data files. There are eight files totalling 1.4GB. Each file is less than 
256MB in size. 

$ wget -O airlines_parquet.tar.gz 
https://www.dropbox.com/s/20ycbvhqsy2uaqv/airlines_parquet.tar.gz 
... 
Length: 1245204740 (1.2G) [application/octet-stream] 
Saving to: “airlines_parquet.tar.gz” 

2015-08-12 17:14:24 (23.6 MB/s) - “airlines_parquet.tar.gz” saved 
[1245204740/1245204740] 

$ tar xvzf airlines_parquet.tar.gz 
airlines_parquet/ 
airlines_parquet/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq 
airlines_parquet/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq 
$ cd airlines_parquet/ 
$ du -kch *.parq 
253M  93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq 

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
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65M 93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq 
156M  93459d994898a9ba-77674173b331fa97_574780876_data.0.parq 
240M  93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq 
253M  93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq 
16M 93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq 
177M  93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq 
213M  93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq 
1.4G  total 

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the 

directory and the files so that the impala  user will be able to read them. (Note: After unpacking, we 
saw the largest Parquet file was 253MB. When copying Parquet files into HDFS for Impala to use, for 
maximum query performance, make sure that each file resides in a single HDFS data block. Therefore, 

we pick a size larger than any single file and specify that as the block size, using the argument -
Ddfs.block.size=256m  on the hdfs dfs -put  command.) 

$ hdfs dfs -mkdir -p 
hdfs://demo_host.example.com:8020/user/impala/staging/airlines 
$ hdfs dfs -Ddfs.block.size=256m -put *.parq /user/impala/staging/airlines 
$ hdfs dfs -ls /user/impala/staging 
Found 1 items 
drwxrwxrwx   - hdfs supergroup          0 2015-08-12 13:52 
/user/impala/staging/airlines 
$ hdfs dfs -ls hdfs://demo_host.example.com:8020/user/impala/staging/airlines 
Found 8 items 
-rw-r--r--   3 jrussell supergroup  265107489 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa96_2118228804_data.0.parq
-rw-r--r--   3 jrussell supergroup   67544715 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa96_2118228804_data.1.parq
-rw-r--r--   3 jrussell supergroup  162556490 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa97_574780876_data.0.parq
-rw-r--r--   3 jrussell supergroup  251603518 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa98_1194408366_data.0.parq
-rw-r--r--   3 jrussell supergroup  265186603 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa99_1555718317_data.0.parq
-rw-r--r--   3 jrussell supergroup   16663754 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa99_1555718317_data.1.parq
-rw-r--r--   3 jrussell supergroup  185511677 2015-08-12 17:18
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/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa9a_2073981944_data.0.parq 
-rw-r--r--   3 jrussell supergroup  222794621 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa9b_1413430552_data.0.parq

With the files in an accessible location in HDFS, we create a database table that uses the data in those 

files. The CREATE EXTERNAL  syntax and the LOCATION  attribute point Impala at the appropriate 

HDFS directory. The LIKE PARQUET 'path_to_any_parquet_file'  clause means we skip the list of 
column names and types; Impala automatically gets the column names and data types straight from the 
data files. (Currently, this technique only works for Parquet files.) We ignore the warning about lack 

of READ_WRITE  access to the files in HDFS; the impala  user can read the files, which will be 
sufficient for us to experiment with queries and perform some copy and transform operations into other 
tables. 

$ impala-shell -i localhost 
Starting Impala Shell without Kerberos authentication 
Connected to localhost:21000 
Server version: impalad version 2.2.0-cdh5 RELEASE (build 
2ffd73a4255cefd521362ffe1cfb37463f67f75c) 
Welcome to the Impala shell. Press TAB twice to see a list of available 
commands. 

Copyright (c) 2012 Cloudera, Inc. All rights reserved. 

(Shell build version: Impala Shell v2.1.2-cdh5 (92438b7) built on Tue Feb 24 
12:36:33 PST 2015) 
[localhost:21000] > create database airline_data; 
[localhost:21000] > use airline_data; 
[localhost:21000] > create external table airlines_external 

> like parquet
'hdfs://demo_host.example.com:8020/user/impala/staging/airlines/93459d994898a
9ba-77674173b331fa96_2118228804_data.0.parq' 

> stored as parquet location
'hdfs://demo_host.example.com:8020/user/impala/staging/airlines'; 
WARNINGS: Impala does not have READ_WRITE access to path 
'hdfs://demo_host.example.com:8020/user/impala/staging' 
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Confirming the Data 
With the table created, we examine its physical and logical characteristics to confirm that the data is 

really there and in a format and shape that we can work with. The SHOW TABLE STATS  statement 
gives a very high-level summary of the table, showing how many files and how much total data it 
contains. Also, it confirms that the table is expecting all the associated data files to be in Parquet 
format. (The ability to work with all kinds of HDFS data files in different formats means that it is possible 
to have a mismatch between the format of the data files, and the format that the table expects the data 
files to be in.) 

The SHOW FILES  statement confirms that the data in the table has the expected number, names, 

and sizes of the original Parquet files. The DESCRIBE  statement (or its abbreviation DESC ) confirms 
the names and types of the columns that Impala automatically created after reading that metadata from 

the Parquet file. The DESCRIBE FORMATTED  statement prints out some extra detail along with the 
column definitions; the pieces we care about for this exercise are the containing database for the table, 
the location of the associated data files in HDFS, the fact that it’s an external table so Impala will not 
delete the HDFS files when we finish the experiments and drop the table, and the fact that the table is 
set up to work exclusively with files in the Parquet format. 

[localhost:21000] > show table stats airlines_external; 
+-------+--------+--------+--------------+-------------------+---------+----+ 
| #Rows | #Files | Size   | Bytes Cached | Cache Replication | Format  | 
Incremental stats | 
+-------+--------+--------+--------------+-------------------+---------+----+ 
| -1    | 8      | 1.34GB | NOT CACHED   | NOT CACHED        | PARQUET | 
false             | 
+-------+--------+--------+--------------+-------------------+---------+----+ 
[localhost:21000] > show files in airlines_external; 
+---------------------------------------------------------------------------+ 
| path
| size     | partition | 
+---------------------------------------------------------------------------+ 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa96_2118228804_data.0.parq | 252.83MB | | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa96_2118228804_data.1.parq | 64.42MB  | | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa97_574780876_data.0.parq  | 155.03MB | | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa98_1194408366_data.0.parq | 239.95MB | | 
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| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa99_1555718317_data.0.parq | 252.90MB |           | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa99_1555718317_data.1.parq | 15.89MB  |           | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa9a_2073981944_data.0.parq | 176.92MB |           | 
| /user/impala/staging/airlines/93459d994898a9ba-
77674173b331fa9b_1413430552_data.0.parq | 212.47MB |           | 
+---------------------------------------------------------------------------+ 
[localhost:21000] > describe airlines_external; 
+---------------------+--------+--------------------------------------------+ 
| name | type   | comment
| 
+---------------------+--------+--------------------------------------------+ 
| year                | int    | inferred from: optional int32 year
| 
| month               | int    | inferred from: optional int32 month
| 
| day                 | int    | inferred from: optional int32 day
| 
| dayofweek           | int    | inferred from: optional int32 dayofweek
| 
| dep_time            | int    | inferred from: optional int32 dep_time
| 
| crs_dep_time        | int    | inferred from: optional int32 crs_dep_time
| 
| arr_time            | int    | inferred from: optional int32 arr_time
| 
| crs_arr_time        | int    | inferred from: optional int32 crs_arr_time
| 
| carrier             | string | inferred from: optional binary carrier
| 
| flight_num          | int    | inferred from: optional int32 flight_num
| 
| tail_num            | int    | inferred from: optional int32 tail_num
| 
| actual_elapsed_time | int    | inferred from: optional int32 
actual_elapsed_time | 
| crs_elapsed_time    | int    | inferred from: optional int32 
crs_elapsed_time    | 
| airtime             | int    | inferred from: optional int32 airtime
| 
| arrdelay            | int    | inferred from: optional int32 arrdelay
| 
| depdelay            | int    | inferred from: optional int32 depdelay
| 
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| origin | string | inferred from: optional binary origin
| 
| dest | string | inferred from: optional binary dest
| 
| distance | int    | inferred from: optional int32 distance
| 
| taxi_in | int    | inferred from: optional int32 taxi_in
| 
| taxi_out | int    | inferred from: optional int32 taxi_out
| 
| cancelled | int    | inferred from: optional int32 cancelled
| 
| cancellation_code   | string | inferred from: optional binary 
cancellation_code  | 
| diverted            | int    | inferred from: optional int32 diverted
| 
| carrier_delay       | int    | inferred from: optional int32 carrier_delay
| 
| weather_delay       | int    | inferred from: optional int32 weather_delay
| 
| nas_delay           | int    | inferred from: optional int32 nas_delay
| 
| security_delay      | int    | inferred from: optional int32 security_delay      
| 
| late_aircraft_delay | int    | inferred from: optional int32 
late_aircraft_delay | 
+---------------------+--------+--------------------------------------------+ 
[localhost:21000] > desc formatted airlines_external; 
+------------------------------+------------------------------- 
| name                         | type 
+------------------------------+------------------------------- 
... 
| # Detailed Table Information | NULL 
| Database:                    | airline_data 
| Owner:                       | jrussell 
... 
| Location:                    | /user/impala/staging/airlines 
| Table Type:                  | EXTERNAL_TABLE 
... 
| # Storage Information | NULL 
| SerDe Library: | parquet.hive.serde.ParquetHiveSerDe 
| InputFormat: | parquet.hive.DeprecatedParquetInputFormat 
| OutputFormat: | parquet.hive.DeprecatedParquetOutputFormat 
... 
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Running Queries 
Now that we are confident that the connections are solid between the Impala table and the underlying 
Parquet files, we run some initial queries to understand the characteristics of the data: the overall 
number of rows, and the ranges and how many different values are in certain columns. For convenience 

in understanding the magnitude of the COUNT(*)  result, we run another query dividing the number 
of rows by 1 million, demonstrating that there are 123 million rows in the table. 

[localhost:21000] > select count(*) from airlines_external; 
+-----------+ 
| count(*)  | 
+-----------+ 
| 123534969 | 
+-----------+ 
Fetched 1 row(s) in 1.32s 
[localhost:21000] > select count(*) / 1e6 as 'millions of rows' from 
airlines_external; 
+------------------+ 
| millions of rows | 
+------------------+ 
| 123.534969       | 
+------------------+ 
Fetched 1 row(s) in 1.24s 

The NDV()  function stands for number of distinct values , which for performance reasons 
is an estimate when there are lots of different values in the column, but is precise when the cardinality is 

less than 16KB. Use NDV()  calls for this kind of exploration rather 

than COUNT(DISTINCT colname) , because Impala can evaluate multiple NDV()  functions in a 

single query, but only a single instance of COUNT DISTINCT . 

Here we see that there are modest numbers of different airlines, flight numbers, and origin and 

destination airports. Two things jump out from this query: the number of tail_num  values is much 
smaller than we might have expected, and there are more destination airports than origin airports. Let’s 
dig further. 

What we find is that most tail_num  values are NULL . It looks like this was an experimental column 
that wasn’t filled in accurately. We make a mental note that if we use this data as a starting point, we’ll 

ignore this column. We also find that certain airports are represented in the ORIGIN  column but not 

the DEST  column; now we know that we can’t rely on the assumption that those sets of airport codes 
are identical. 
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(Note: A slight digression for some performance tuning. Notice how the first SELECT DISTINCT
DEST  query takes almost 40 seconds. We expect all queries on such a small data set, less than 2GB, to 

take a few seconds at most. The reason is because the expression NOT IN (SELECT origin  
FROM airlines_external)  produces an intermediate result set of 123 million rows, then runs 123 

million comparisons on each data node against the tiny set of destination airports. The way the NOT  
IN  operator works internally means that this intermediate result set with 123 million rows might be 

transmitted across the network to each data node in the cluster. Applying another DISTINCT  inside 

the NOT IN  subquery means that the intermediate result set is only 340 items, resulting in much less 
network traffic and fewer comparison operations. The more efficient query with the 

added DISTINCT  is approximately seven times as fast.) 

[localhost:21000] > select ndv(carrier), ndv(flight_num), ndv(tail_num), 
> ndv(origin), ndv(dest) from airlines_external;

+--------------+-----------------+---------------+-------------+-----------+ 
| ndv(carrier) | ndv(flight_num) | ndv(tail_num) | ndv(origin) | ndv(dest) | 
+--------------+-----------------+---------------+-------------+-----------+ 
| 29           | 9086            | 3             | 340         | 347       | 
+--------------+-----------------+---------------+-------------+-----------+ 
[localhost:21000] > select tail_num, count(*) as howmany from 
airlines_external 

> group by tail_num;
+----------+-----------+ 
| tail_num | howmany   | 
+----------+-----------+ 
| 715      | 1 | 
| 0 | 406405    | 
| 112      | 6562      | 
| NULL     | 123122001 | 
+----------+-----------+ 
Fetched 1 row(s) in 5.18s 
[localhost:21000] > select distinct dest from airlines_external 

> where dest not in (select origin from
airlines_external); 
+------+ 
| dest | 
+------+ 
| LBF  | 
| CBM  | 
| RCA  | 
| SKA  | 
| LAR  | 
+------+ 
Fetched 5 row(s) in 39.64s 
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[localhost:21000] > select distinct dest from airlines_external 
> where dest not in (select distinct origin from

airlines_external); 
+------+ 
| dest | 
+------+ 
| LBF  | 
| RCA  | 
| CBM  | 
| SKA  | 
| LAR  | 
+------+ 
Fetched 5 row(s) in 5.59s 
[localhost:21000] > select distinct origin from airlines_external 

> where origin not in (select distinct dest from
airlines_external); 
Fetched 0 row(s) in 5.37s 

Initial Exploration 
Next, we try doing a simple calculation, with results broken down by year. This reveals that some years 

have no data in the AIRTIME  column. That means we might be able to use that column in queries 
involving certain date ranges, but we can’t count on it to always be reliable. The question of whether a 

column contains any NULL  values, and if so what is their number, proportion, and distribution, comes 
up again and again when doing initial exploration of a data set. 

[localhost:21000] > select year, sum(airtime) from airlines_external 
> group by year order by year desc;

+------+--------------+ 
| year | sum(airtime) | 
+------+--------------+ 
| 2008 | 713050445    | 
| 2007 | 748015545    | 
| 2006 | 720372850    | 
| 2005 | 708204026    | 
| 2004 | 714276973    | 
| 2003 | 665706940    | 
| 2002 | 549761849    | 
| 2001 | 590867745    | 
| 2000 | 583537683    | 
| 1999 | 561219227    | 
| 1998 | 538050663    | 
| 1997 | 536991229    | 
| 1996 | 519440044    | 
| 1995 | 513364265    | 
| 1994 | NULL | 
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| 1993 | NULL | 
| 1992 | NULL | 
| 1991 | NULL | 
| 1990 | NULL | 
| 1989 | NULL | 
| 1988 | NULL         | 
| 1987 | NULL | 

With the notion of NULL  values in mind, let’s come back to the TAILNUM  column that we discovered 

had a lot of NULL s. Let’s quantify the NULL  and non- NULL  values in that column for better 
understanding. 

First, we just count the overall number of rows versus the non- NULL  values in that column. That initial 

result gives the appearance of relatively few non- NULL  values, but we can break it down more clearly 

in a single query. Once we have the COUNT(*)  and the COUNT(colname)  numbers, we can encode 

that initial query in a WITH  clause, then run a followon query that performs multiple arithmetic 
operations on those values. Seeing that only one-third of one percent of all rows have non-

NULL  values for the TAILNUM  column clearly illustrates that that column won’t be of much use. 

[localhost:21000] > select count(*) as 'rows', count(tail_num) as 'non-null 
tail numbers' 

> from airlines_external;
+-----------+-----------------------+ 
| rows      | non-null tail numbers | 
+-----------+-----------------------+ 
| 123534969 | 412968                | 
+-----------+-----------------------+ 
Fetched 1 row(s) in 1.51s 
[localhost:21000] > with t1 as 

> (select count(*) as 'rows', count(tail_num) as
'nonnull' 

> from airlines_external)
> select `rows`, `nonnull`, `rows` - `nonnull` as 'nulls',
> (`nonnull` / `rows`) * 100 as 'percentage non-null'
> from t1;

+-----------+---------+-----------+---------------------+ 
| rows      | nonnull | nulls     | percentage non-null | 
+-----------+---------+-----------+---------------------+ 
| 123534969 | 412968  | 123122001 | 0.3342923897119365  | 
+-----------+---------+-----------+---------------------+ 
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By examining other columns using these techniques, we can form a mental picture of the way data is 
distributed throughout the table, and which columns are most significant for query purposes. For this 
tutorial, we focus mostly on the fields likely to hold discrete values, rather than columns such 

as ACTUAL_ELAPSED_TIME whose names suggest they hold measurements. We would dig deeper 
into those columns once we had a clear picture of which questions were worthwhile to ask, and what 
kinds of trends we might look for. 

For the final piece of initial exploration, let’s look at the YEAR  column. A simple GROUP BY  query 
shows that it has a well-defined range, a manageable number of distinct values, and relatively even 
distribution of rows across the different years. 

[localhost:21000] > select min(year), max(year), ndv(year) from 
airlines_external; 
+-----------+-----------+-----------+ 
| min(year) | max(year) | ndv(year) | 
+-----------+-----------+-----------+ 
| 1987      | 2008      | 22        | 
+-----------+-----------+-----------+ 
Fetched 1 row(s) in 2.03s 
[localhost:21000] > select year, count(*) howmany from airlines_external 

> group by year order by year desc;
+------+---------+ 
| year | howmany | 
+------+---------+ 
| 2008 | 7009728 | 
| 2007 | 7453215 | 
| 2006 | 7141922 | 
| 2005 | 7140596 | 
| 2004 | 7129270 | 
| 2003 | 6488540 | 
| 2002 | 5271359 | 
| 2001 | 5967780 | 
| 2000 | 5683047 | 
| 1999 | 5527884 | 
| 1998 | 5384721 | 
| 1997 | 5411843 | 
| 1996 | 5351983 | 
| 1995 | 5327435 | 
| 1994 | 5180048 | 
| 1993 | 5070501 | 
| 1992 | 5092157 | 
| 1991 | 5076925 | 
| 1990 | 5270893 | 
| 1989 | 5041200 | 
| 1988 | 5202096 | 
| 1987 | 1311826 | 



52	
  

+------+---------+ 
Fetched 22 row(s) in 2.13s 

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If 
the data set proved to be useful and worth persisting in Impala for extensive queries, we might want to 
copy it to an internal table, letting Impala manage the data files and perhaps reorganizing a little for 
higher efficiency. 

Copying the Data into a Partitioned Table 
Partitioning based on the YEAR  column lets us run queries with clauses such as WHERE year =
2001  or WHERE year BETWEEN 1989 AND 1999 , which can dramatically cut down on I/O by 

ignoring all the data from years outside the desired range. Rather than reading all the data and then 
deciding which rows are in the matching years, Impala can zero in on only the data files from 

specific YEAR  partitions. To do this, Impala physically reorganizes the data files, putting the rows from 

each year into data files in a separate HDFS directory for each YEAR  value. Along the way, we’ll also 

get rid of the TAIL_NUM  column that proved to be almost entirely NULL . 

The first step is to create a new table with a layout very similar to the 

original AIRLINES_EXTERNAL  table. We’ll do that by reverse-engineering a CREATE
TABLE  statement for the first table, then tweaking it slightly to include a PARTITION BY  clause 

for YEAR , and excluding the TAIL_NUM  column. The SHOW CREATE TABLE statement gives us 
the starting point. 

[localhost:21000] > show create table airlines_external; 
+---------------------------------------------------------------------------- 
| result 
+---------------------------------------------------------------------------- 
| CREATE EXTERNAL TABLE airline_data.airlines_external ( 
|   year INT COMMENT 'inferred from: optional int32 year', 
|   month INT COMMENT 'inferred from: optional int32 month', 
|   day INT COMMENT 'inferred from: optional int32 day', 
|   dayofweek INT COMMENT 'inferred from: optional int32 dayofweek', 
|   dep_time INT COMMENT 'inferred from: optional int32 dep_time', 
|   crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time', 
|   arr_time INT COMMENT 'inferred from: optional int32 arr_time', 
|   crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time', 
|   carrier STRING COMMENT 'inferred from: optional binary carrier', 
|   flight_num INT COMMENT 'inferred from: optional int32 flight_num', 
|   tail_num INT COMMENT 'inferred from: optional int32 tail_num', 
|   actual_elapsed_time INT COMMENT 'inferred from: optional int32 
actual_elapsed_time', 
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|   crs_elapsed_time INT COMMENT 'inferred from: optional int32 
crs_elapsed_time', 
|   airtime INT COMMENT 'inferred from: optional int32 airtime', 
|   arrdelay INT COMMENT 'inferred from: optional int32 arrdelay', 
|   depdelay INT COMMENT 'inferred from: optional int32 depdelay', 
|   origin STRING COMMENT 'inferred from: optional binary origin', 
|   dest STRING COMMENT 'inferred from: optional binary dest', 
|   distince INT COMMENT 'inferred from: optional int32 distince', 
|   taxi_in INT COMMENT 'inferred from: optional int32 taxi_in', 
|   taxi_out INT COMMENT 'inferred from: optional int32 taxi_out', 
|   cancelled INT COMMENT 'inferred from: optional int32 cancelled', 
|   cancellation_code STRING COMMENT 'inferred from: optional binary 
cancellation_code', 
|   diverted INT COMMENT 'inferred from: optional int32 diverted', 
|   carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay', 
|   weather_delay INT COMMENT 'inferred from: optional int32 weather_delay', 
|   nas_delay INT COMMENT 'inferred from: optional int32 nas_delay', 
|   security_delay INT COMMENT 'inferred from: optional int32 
security_delay', 
|   late_aircraft_delay INT COMMENT 'inferred from: optional int32 
late_aircraft_delay' 
| ) 
| STORED AS PARQUET 
| LOCATION 
'hdfs://a1730.halxg.cloudera.com:8020/user/impala/staging/airlines' 
| TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false', 
|   'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0', 
|   'rawDataSize'='-1') 
+---------------------------------------------------------------------------- 
Fetched 1 row(s) in 0.03s 
[localhost:21000] > quit; 

Although we could edit that output into a new SQL statement, all the ASCII box characters make such 

editing inconvenient. To get a more stripped-down CREATE TABLE  to start with, we restart 

the impala-shell command with the -B  option, which turns off the box-drawing behavior. 

[localhost:21000] > quit; 
Goodbye jrussell 
$ impala-shell -i localhost -B -d airline_data; 
Starting Impala Shell without Kerberos authentication 
Connected to localhost:21000 
Server version: impalad version 2.2.0-cdh5 RELEASE (build 
2ffd73a4255cefd521362ffe1cfb37463f67f75c) 
Welcome to the Impala shell. Press TAB twice to see a list of available 
commands. 
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Copyright (c) 2012 Cloudera, Inc. All rights reserved. 

(Shell build version: Impala Shell v2.1.2-cdh5 (92438b7) built on Tue Feb 24 
12:36:33 PST 2015) 
[localhost:21000] > show create table airlines_external; 
"CREATE EXTERNAL TABLE airline_data.airlines_external ( 
  year INT COMMENT 'inferred from: optional int32 year', 
  month INT COMMENT 'inferred from: optional int32 month', 
  day INT COMMENT 'inferred from: optional int32 day', 
  dayofweek INT COMMENT 'inferred from: optional int32 dayofweek', 
  dep_time INT COMMENT 'inferred from: optional int32 dep_time', 
  crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time', 
  arr_time INT COMMENT 'inferred from: optional int32 arr_time', 
  crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time', 
  carrier STRING COMMENT 'inferred from: optional binary carrier', 
  flight_num INT COMMENT 'inferred from: optional int32 flight_num', 
  tail_num INT COMMENT 'inferred from: optional int32 tail_num', 
  actual_elapsed_time INT COMMENT 'inferred from: optional int32 
actual_elapsed_time', 
  crs_elapsed_time INT COMMENT 'inferred from: optional int32 
crs_elapsed_time', 
  airtime INT COMMENT 'inferred from: optional int32 airtime', 
  arrdelay INT COMMENT 'inferred from: optional int32 arrdelay', 
  depdelay INT COMMENT 'inferred from: optional int32 depdelay', 
  origin STRING COMMENT 'inferred from: optional binary origin', 
  dest STRING COMMENT 'inferred from: optional binary dest', 
  distance INT COMMENT 'inferred from: optional int32 distance', 
  taxi_in INT COMMENT 'inferred from: optional int32 taxi_in', 
  taxi_out INT COMMENT 'inferred from: optional int32 taxi_out', 
  cancelled INT COMMENT 'inferred from: optional int32 cancelled', 
  cancellation_code STRING COMMENT 'inferred from: optional binary 
cancellation_code', 
  diverted INT COMMENT 'inferred from: optional int32 diverted', 
  carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay', 
  weather_delay INT COMMENT 'inferred from: optional int32 weather_delay', 
  nas_delay INT COMMENT 'inferred from: optional int32 nas_delay', 
  security_delay INT COMMENT 'inferred from: optional int32 security_delay', 
  late_aircraft_delay INT COMMENT 'inferred from: optional int32 
late_aircraft_delay' 
) 
STORED AS PARQUET 
LOCATION 'hdfs://a1730.halxg.cloudera.com:8020/user/impala/staging/airlines' 
TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false', 
  'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0', 
  'rawDataSize'='-1')" 
Fetched 1 row(s) in 0.01s 
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After copying and pasting the CREATE TABLE  statement into a text editor for fine-tuning, we quit 

and restart impala-shell  without the -B  option, to switch back to regular output. 

Next we run the CREATE TABLE  statement that we adapted from the SHOW CREATE
TABLE  output. We kept the STORED AS PARQUET  clause because we want to rearrange the data 

somewhat but still keep it in the high-performance Parquet format. 

The LOCATION  and TBLPROPERTIES  clauses are not relevant for this new table, so we edit those 

out. Because we are going to partition the new table based on the YEAR  column, we move that 

column name (and its type) into a new PARTITIONED BY  clause. 

[localhost:21000] > CREATE TABLE airline_data.airlines 
> ( 
>   month INT,
> day INT,
> dayofweek INT,
> dep_time INT,
> crs_dep_time INT,
> arr_time INT,
> crs_arr_time INT,
> carrier STRING,
> flight_num INT,
> actual_elapsed_time INT,
> crs_elapsed_time INT,
> airtime INT,
> arrdelay INT,
> depdelay INT,
> origin STRING,
> dest STRING,
> distance INT,
> taxi_in INT,
> taxi_out INT,
> cancelled INT,
> cancellation_code STRING,
> diverted INT,
> carrier_delay INT,
> weather_delay INT,
> nas_delay INT,
> security_delay INT,
> late_aircraft_delay INT
> )
> STORED AS PARQUET
> PARTITIONED BY (year INT);

Fetched 0 row(s) in 0.10s 
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Next, we copy all the rows from the original table into this new one with an INSERT  statement. (We 

edited the CREATE TABLE  statement to make an INSERT  statement with the column names in the 

same order.) The only change is to add a PARTITION(year)  clause, and move the YEAR  column 

to the very end of the SELECT  list of the INSERT  statement. Specifying PARTITION(year) , 

rather than a fixed value such as PARTITION(year=2000) , means that Impala figures out the 

partition value for each row based on the value of the very last column in the SELECT  list. 

This is the first SQL statement that legitimately takes any substantial time, because the rows from 
different years are shuffled around the cluster; the rows that go into each partition are collected on one 
node, before being written to one or more new data files. 

[localhost:21000] > INSERT INTO airline_data.airlines 
> PARTITION (year)
> SELECT
> month,
> day,
> dayofweek,
> dep_time,
> crs_dep_time,
> arr_time,
> crs_arr_time,
> carrier,
> flight_num,
> actual_elapsed_time,
> crs_elapsed_time,
> airtime,
> arrdelay,
> depdelay,
> origin,
> dest,
> distance,
> taxi_in,
> taxi_out,
> cancelled,
> cancellation_code,
> diverted,
> carrier_delay,
> weather_delay,
> nas_delay,
> security_delay,
> late_aircraft_delay,
> year
> FROM airline_data.airlines_external;

Inserted 123534969 row(s) in 202.70s 
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Once partitioning or join queries come into play, it’s important to have statistics that Impala can use to 

optimize queries on the corresponding tables. The COMPUTE INCREMENTAL STATS  statement is 

the way to collect statistics for partitioned tables. Then the SHOW TABLE STATS  statement confirms 
that the statistics are in place for each partition, and also illustrates how many files and how much raw 
data is in each partition. 

[localhost:21000] > compute incremental stats airlines; 
+-------------------------------------------+ 
| summary                                   | 
+-------------------------------------------+ 
| Updated 22 partition(s) and 27 column(s). | 
+-------------------------------------------+ 
[localhost:21000] > show table stats airlines; 
+-------+-----------+--------+----------+--------------+------------+--------
-+-------------------+ 
| year  | #Rows     | #Files | Size     | Bytes Cached | Cache Repl | Format  
| Incremental stats | 
+-------+-----------+--------+----------+--------------+------------+--------
-+----- 
| 1987  | 1311826   | 1      | 9.32MB   | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1988  | 5202096   | 1      | 37.04MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1989  | 5041200   | 1      | 36.25MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1990  | 5270893   | 1      | 38.39MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1991  | 5076925   | 1      | 37.23MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1992  | 5092157   | 1      | 36.85MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1993  | 5070501   | 1      | 37.16MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1994  | 5180048   | 1      | 38.31MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1995  | 5327435   | 1      | 53.14MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1996  | 5351983   | 1      | 53.64MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1997  | 5411843   | 1      | 54.41MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 1998  | 5384721   | 1      | 54.01MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
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| 1999  | 5527884   | 1      | 56.32MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2000  | 5683047   | 1      | 58.15MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2001  | 5967780   | 1      | 60.65MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2002  | 5271359   | 1      | 57.99MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2003  | 6488540   | 1      | 81.33MB  | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2004  | 7129270   | 1      | 103.19MB | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2005  | 7140596   | 1      | 102.61MB | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2006  | 7141922   | 1      | 106.03MB | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2007  | 7453215   | 1      | 112.15MB | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| 2008  | 7009728   | 1      | 105.76MB | NOT CACHED   | NOT CACHED | PARQUET 
| true 
| Total | 123534969 | 22     | 1.30GB   | 0B           |            |
| 
+-------+-----------+--------+----------+--------------+------------+-------+ 

At this point, we go through a quick thought process to sanity check the partitioning we did. All the 

partitions have exactly one file, which is on the low side. A query that includes a clause WHERE
year=2004  will only read a single data block; that data block will be read and processed by a single 

data node; therefore, for a query targeting a single year, all the other nodes in the cluster will sit idle 
while all the work happens on a single machine. It’s even possible that by chance (depending on HDFS 
replication factor and the way data blocks are distributed across the cluster), that multiple year 

partitions selected by a filter such as WHERE year BETWEEN 1999 AND 2001  could all be read 
and processed by the same data node. The more data files each partition has, the more parallelism you 
can get and the less probability of “hotspots” occurring on particular nodes, therefore a bigger 
performance boost by having a big CDH cluster. 

However, the more data files, the less data goes in each one. The overhead of dividing the work in a 
parallel query might not be worth it if each node is only reading a few megabytes. 50 or 100MB is a 
decent size for a Parquet data block; 9 or 37MB is on the small side. Which is to say, the data 
distribution we ended up with based on this partitioning scheme is on the borderline between sensible 
(reasonably large files) and suboptimal (few files in each partition). The way to see how well it works in 
practice is to run the same queries against the original flat table and the new partitioned table, and 
compare times. 
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Spoiler: in this case, with my particular four-node cluster with its specific distribution of data blocks and 
my particular exploratory queries, queries against the partitioned table do consistently run faster than 
the same queries against the unpartitioned table. But I could not be sure that would be the case without 
some real measurements. Here are some queries I ran to draw that conclusion, first 

against AIRLINES_EXTERNAL  (no partitioning), then against AIRLINES  (partitioned by year). 

The AIRLINES  queries are consistently faster. Changing the volume of data, changing the size of the 
cluster, running queries that did or didn’t refer to the partition key columns, or other factors could 
change the results to favor one table layout or the other. 

(Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering 
the granularity of partitioning. For example, instead of partitioning by year, month, and day, partition by 
year and month or even just by year. The ideal layout to distribute work efficiently in a parallel query is 
many tens or even hundreds of megabytes per Parquet file, and the number of Parquet files in each 
partition somewhat higher than the number of data nodes.) 

[localhost:21000] > select sum(airtime) from airlines_external; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 8662859484   | 
+--------------+ 
Fetched 1 row(s) in 2.02s 
[localhost:21000] > select sum(airtime) from airlines; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 8662859484   | 
+--------------+ 
Fetched 1 row(s) in 1.21s 

[localhost:21000] > select sum(airtime) from airlines_external where year = 
2005; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 708204026    | 
+--------------+ 
Fetched 1 row(s) in 2.61s 
[localhost:21000] > select sum(airtime) from airlines where year = 2005; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 708204026    | 
+--------------+ 
Fetched 1 row(s) in 1.19s 
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[localhost:21000] > select sum(airtime) from airlines_external where 
dayofweek = 1; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 1264945051   | 
+--------------+ 
Fetched 1 row(s) in 2.82s 
[localhost:21000] > select sum(airtime) from airlines where dayofweek = 1; 
+--------------+ 
| sum(airtime) | 
+--------------+ 
| 1264945051   | 
+--------------+ 
Fetched 1 row(s) in 1.61s 

Diving into Real Analysis 
Now we can finally do some serious analysis with this data set that, remember, a few minutes ago all we 
had were some raw data files and we didn’t even know what columns they contained. Let’s see whether 
the “air time” of a flight tends to be different depending on the day of the week. We can see that the 
average is a little higher on day number 6; perhaps Saturday is a busy flying day and planes have to 
circle for longer at the destination airport before landing. 

[localhost:21000] > select dayofweek, avg(airtime) from airlines 

> group by dayofweek order by dayofweek;

+-----------+-------------------+ 

| dayofweek | avg(airtime)      | 

+-----------+-------------------+ 

| 1 | 102.1560425016671 | 

| 2 | 102.1582931538807 | 

| 3 | 102.2170009256653 | 

| 4 | 102.37477661846   | 

| 5 | 102.2697358763511 | 

| 6 | 105.3627448363705 | 

| 7 | 103.4144351202054 | 

+-----------+-------------------+ 

Fetched 7 row(s) in 2.25s 
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To see if the apparent trend holds up over time, let’s do the same breakdown by day of week, but also 
split up by year. Now we can see that day number 6 consistently has a higher average air time in each 
year. We can also see that the average air time increased over time across the board. And the presence 

of NULL  for this column in years 1987 to 1994 shows that queries involving this column need to be 
restricted to a date range of 1995 and higher. 

[localhost:21000] > select year, dayofweek, avg(airtime) from airlines 
> group by year, dayofweek order by year desc, dayofweek;

+------+-----------+-------------------+ 
| year | dayofweek | avg(airtime)      | 
+------+-----------+-------------------+ 
| 2008 | 1 | 103.1821651651355 | 
| 2008 | 2 | 103.2149301386094 | 
| 2008 | 3 | 103.0585076622796 | 
| 2008 | 4 | 103.4671383539038 | 
| 2008 | 5 | 103.5575385182659 | 
| 2008 | 6 | 107.4006306562128 | 
| 2008 | 7 | 104.8648851041755 | 
| 2007 | 1 | 102.2196114337825 | 
| 2007 | 2 | 101.9317791906348 | 
| 2007 | 3 | 102.0964767689043 | 
| 2007 | 4 | 102.6215927201686 | 
| 2007 | 5 | 102.4289399000661 | 
| 2007 | 6 | 105.1477448215756 | 
| 2007 | 7 | 103.6305945644095 | 
... 
| 1996 | 1 | 99.33860750862108 | 
| 1996 | 2 | 99.54225446396656 | 
| 1996 | 3 | 99.41129336113134 | 
| 1996 | 4 | 99.5110373340348  | 
| 1996 | 5 | 99.22120745027595 | 
| 1996 | 6 | 101.1717447111921 | 
| 1996 | 7 | 99.95410136133704 | 
| 1995 | 1 | 96.93779698300494 | 
| 1995 | 2 | 96.93458674589712 | 
| 1995 | 3  | 97.00972311337051 | 
| 1995 | 4 | 96.90843832024412 | 
| 1995 | 5 | 96.78382115425562 | 
| 1995 | 6 | 98.70872826057003 | 
| 1995 | 7 | 97.85570478374616 | 
| 1994 | 1 | NULL | 
| 1994 | 2 | NULL   | 
| 1994 | 3 | NULL | 
... 
| 1987 | 5 | NULL | 
| 1987 | 6 | NULL | 
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| 1987 | 7         | NULL              | 
+------+-----------+-------------------+ 

Conclusion 
I hope this use case has provided a good example of how to prepare data originating from outside 
Impala (and even non-SQL data) for analysis. Crunch away! 
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