Evolve logo オンデマンド配信 Evolve 2023 Tokyo|AI、データと分析の先進事例を紹介
  • Cloudera Cloudera
  • Increasing the likelihood of success

    Every machine learning effort requires a programmatic approach. It starts with a feasibility study: Is it even possible to solve a given data problem with the available data and the requirements of the business? Through careful exploratory machine learning work, we validate the feasibility of machine learning project ambition. Sometimes success can even be measured in cost savings from identifying an effort that won’t pan out. 

    Rules of engagement

    Our three-phase process aims to usher your project from science to engineering, starting with proof of concept, carefully documenting what worked and didn't work, and ending with the handoff from your data scientists to production. The length of a typical engagement depends on the complexity of the project.

    We break it up into three phases:

    1. Exploration (two weeks)
    2. Algorithmic excellence (a few weeks to a couple of months)
    3. Operationalization (a few weeks to a couple of months)
    Mapping out a hadoop cluster

    Learn more about Cloudera machine learning advisory services

    Your form submission has failed.

    This may have been caused by one of the following:

    • Your request timed out
    • A plugin/browser extension blocked the submission. If you have an ad blocking plugin please disable it and close this message to reload the page.