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Abstract
Kudu is an open source storage engine for structured data which supports low-latency random 
access together with efficient analytical access patterns. Kudu distributes data using horizontal 
partitioning and replicates each partition using Raft consensus, providing low mean-time-to-recovery 
and low tail latencies. Kudu is designed within the context of the Hadoop ecosystem and supports 
many modes of access via tools such as Cloudera Impala[20], Apache Spark™[28], and MapReduce[17].

1 Introduction
In recent years, explosive growth in the amount of data being generated and captured by enterprises 
has resulted in the rapid adoption of open source technology which is able to store massive data 
sets at scale and at low cost. In particular, the Hadoop ecosystem has become a focal point for such 
“big data” workloads, because many traditional open source database systems have lagged in 
offering a scalable alternative.

Structured storage in the Hadoop ecosystem has typically been achieved in two ways: for static 
data sets, data is typically stored on HDFS using binary data formats such as Apache Avro™[1] or 
Apache Parquet[3]. However, neither HDFS nor these formats haves any provision for updating 
individual records, or for efficient random access. Mutable data sets are typically stored in semi-
structured stores such as Apache HBase™[2] or Apache Cassandra™[21]. These systems allow  
for low-latency record-level reads and writes, but lag far behind the static file formats in terms of 
sequential read throughput for applications such as SQL-based analytics or machine learning.

The gap between the analytic performance offered by static data sets on HDFS and the low-latency 
row-level random access capabilities of HBase and Cassandra has required practitioners to develop 
complex architectures when the need for both access patterns arises in a single application. In 
particular, many of Cloudera’s customers have developed data pipelines which involve streaming 
ingest and updates in HBase, followed by periodic jobs to export tables to Parquet for later analysis. 
Such architectures suer several downsides:

1. Application architects must write complex code to manage the ow and synchronization  
of data between the two systems.

2. Operators must manage consistent backups, security policies, and monitoring across 
multiple distinct systems.

3. The resulting architecture may exhibit significant lag between the arrival of new data into  
the HBase “staging area” and the time when the new data is available for analytics.

4. In the real world, systems often need to accomodate late-arriving data, corrections on  
past records, or privacy-related deletions on data that has already been migrated to the 
immutable store. Achieving this may involve expensive rewriting and swapping of partitions  
and manual intervention.

Kudu is a new storage system designed and implemented from the ground up to fill this gap between 
high-throughput, sequential-access storage systems such as HDFS[27] and low-latency, random-
access systems such as HBase or Cassandra. While these existing systems continue to hold 
advantages in some situations, Kudu offers a “happy medium” alternative that can dramatically 
simplify the architecture of many common workloads. In particular, Kudu offers a simple API  
for row-level inserts, updates, and deletes, while providing table scans at throughputs similar  
to Parquet, a commonly-used columnar format for static data.

This paper introduces the architecture of Kudu. Section 2 describes the system from a user’s point 
of view, introducing the data model, APIs, and operator-visible constructs. Section 3 describes the 
architecture of Kudu, including how it partitions and replicates data across nodes, recovers from faults, 
and performs common operations. Section 4 explains how Kudu stores its data on disk in order to 
combine fast random access with efficient analytics. Section 5 discusses integrations between 
Kudu and other Hadoop ecosystem projects. Section 6 presents preliminary performance results 
in synthetic workloads.

 * This document is a draft. Edits will be made and re-published to the Kudu open source project web site on a rolling basis.
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2 Kudu at a high level
2.1 Tables and schemas
From the perspective of a user, Kudu is a storage system for tables of structured data. A Kudu cluster 
may have any number of tables, each of which has a well-defined schema consisting of a finite number 
of columns. Each such column has a name, type (e.g. INT32 or STRING), and optional nullability. 
Some ordered subset of those columns are specified to be the table’s primary key. The primary key 
enforces a uniqueness constraint (at most one row may have a given primary key tuple) and acts 
as the sole index by which rows may be efficiently updated or deleted. This data model is familiar 
to users of relational databases, but differs from many other distributed datastores such as Cassandra, 
MongoDB[6], Riak[8], BigTable[12], etc.

As with a relational database, the user must define the schema of a table at the time of creation. 
Attempts to insert data into undefined columns result in errors, as do violations of the primary key 
uniqueness constraint. The user may at any time issue an alter table command to add or drop 
columns, with the restriction that primary key columns cannot be dropped.

Our decision to explicitly specify types for columns instead of using a NoSQL-style “everything  
is bytes” is motivated by two factors:

1. Explicit types allow us to use type-specific columnar encodings such as bit-packing for integers.

2. Explicit types allow us to expose SQL-like metadata to other systems, such as commonly 
used business intelligence or data exploration tools.

Unlike most relational databases, Kudu does not currently offer secondary indexes or uniqueness 
constraints other than the primary key. Currently, Kudu requires that every table has a primary key 
defined, though we anticipate that a future version will add automatic generation of surrogate keys.

2.2 Write operations
After creating a table, the user mutates the table using Insert, Update, and Delete APIs. In all cases, 
the user must fully specify a primary key — predicate-based deletions or updates must be handled 
by a higher-level access mechanism (see section 5).

Kudu offers APIs in Java and C++, with experimental support for Python. The APIs allow precise 
control over batching and asynchronous error handling to amortize the cost of round trips when 
performing bulk data operations (such as data loads or large updates). Currently, Kudu does not 
offer any multi-row transactional APIs: each mutation conceptually executes as its own transaction, 
despite being automatically batched with other mutations for better performance. Modifications 
within a single row are always executed atomically across columns.

2.3 Read operations
Kudu offers only a Scan operation to retrieve data from a table. On a scan, the user may add any 
number of predicates to filter the results. Currently, we offer only two types of predicates: comparisons 
between a column and a constant value, and composite primary key ranges. These predicates are 
interpreted both by the client API and the server to efficiently cull the amount of data transferred 
from the disk and over the network. In addition to applying predicates, the user may specify a projection 
for a scan. A projection consists of a subset of columns to be retrieved. Because Kudu’s on-disk 
storage is columnar, specifying such a subset can substantially improve performance for typical 
analytic workloads.

2.4 Other APIs
In addition to data path APIs, the Kudu client library offers other useful functionality. In particular, 
the Hadoop ecosystem gains much of its performance by scheduling for data locality. Kudu provides 
APIs for callers to determine the mapping of data ranges to particular servers to aid distributed 
execution frameworks such as Spark, MapReduce, or Impala in scheduling.

2.5 Consistency Model
Kudu provides clients the choice between two consistency modes. The default consistency mode is 
snapshot consistency. A scan is guaranteed to yield a snapshot with no anomalies in which causality 
would be violated1. As such, it also guarantees read-your-writes consistency from a single client. 

1 In the current beta release of Kudu, this consistency support is not yet fully implemented. However, this paper describes the architecture and 
design of the system, despite the presence of some known consistency-related bugs.
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By default, Kudu does not provide an external consistency guarantee. That is to say, if a client performs 
a write, then communicates with a different client via an external mechanism (e.g. a message bus) 
and the other performs a write, the causal dependence between the two writes is not captured. A 
third reader may see a snapshot which contains the second write without the first.

Based on our experiences supporting other systems such as HBase that also do not offer external 
consistency guarantees, this is sufficient for many use cases. However, for users who require a stronger 
guarantee, Kudu offers the option to manually propagate timestamps between clients: after performing 
a write, the user may ask the client library for a timestamp token. This token may be propagated to 
another client through the external channel, and passed to the Kudu API on the other side, thus 
preserving the causal relationship between writes made across the two clients.

If propagating tokens is too complex, Kudu optionally uses commit-wait as in Spanner[14]. After 
performing a write with commit-wait enabled, the client may be delayed for a period of time to 
ensure that any later write will be causally ordered correctly. Absent specialized time-keeping 
hardware, this can introduce significant latencies in writes (100-1000ms with default NTP configurations), 
so we anticipate that a minority of users will take advantage of this option. We also note that, since 
the publication of Spanner, several data stores have started to take advantage of real-time clocks. 
Given this, it is plausible that within a few years, cloud providers will offer tight global time 
synchronization as a differentiating service.

The assignment of operation timestamps is based on a clock algorithm termed HybridTime[15]. 
Please refer to the cited article for details.

2.6 Timestamps
Although Kudu uses timestamps internally to implement concurrency control, Kudu does not 
allow the user to manually set the timestamp of a write operation. This differs from systems such  
as Cassandra and HBase, which treat the timestamp of a cell as a first-class part of the data model.  
In our experiences supporting users of these other systems, we have found that, while advanced 
users can make effective use of the timestamp dimension, the vast majority of users find this 
aspect of the data model confusing and a source of user error, especially with regard to the 
semantics of back-dated insertions and deletions.

We do, however, allow the user to specify a timestamp for a read operation. This allows the user to 
perform point-in-time queries in the past, as well as to ensure that different distributed tasks that 
together make up a single “query” (e.g. as in Spark or Impala) read a consistent snapshot.

3 Architecture
3.1 Cluster roles
Following the design of BigTable and GFS[18] (and their open-source analogues HBase and HDFS), 
Kudu relies on a single Master server, responsible for metadata, and an arbitrary number of Tablet 
Servers, responsible for data. The master server can be replicated for fault tolerance, supporting 
very fast failover of all responsibilities in the event of an outage. Typically, all roles are deployed 
on commodity hardware, with no extra requirements for master nodes.

3.2 Partitioning
As in most distributed database systems, tables in Kudu are horizontally partitioned. Kudu, like 
BigTable, calls these horizontal partitions tablets. Any row may be mapped to exactly one tablet 
based on the value of its primary key, thus ensuring that random access operations such as inserts 
or updates affect only a single tablet. For large tables where throughput is important, we recommend 
on the order of 10-100 tablets per machine. Each tablet can be tens of gigabytes.

Unlike BigTable, which offers only key-range-based partitioning, and unlike Cassandra, which is nearly 
always deployed with hash-based partitioning, Kudu supports a flexible array of partitioning schemes. 
When creating a table, the user species a partition schema for that table. The partition schema acts 
as a function which can map from a primary key tuple into a binary partition key. Each tablet covers 
a contiguous range of these partition keys. Thus, a client, when performing a read or write, can easily 
determine which tablet should hold the given key and route the request accordingly.
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The partition schema is made up of zero or more hash-partitioning rules followed by an optional 
range-partitioning rule:

• A hash-partitioning rule consists of a subset of the primary key columns and a number of 
buckets. For example, as expressed in our SQL dialect, DISTRIBUTE BY HASH(hostname, ts) 
INTO 16 BUCKETS. These rules convert tuples into binary keys by first concatenating the values 
of the specified columns, and then computing the hash code of the resulting string modulo the 
requested number of buckets. This resulting bucket number is encoded as a 32-bit big-endian 
integer in the resulting partition key.

• A range-partitioning rule consists of an ordered subset of the primary key columns. This rule 
maps tuples into binary strings by concatenating the values of the specified columns using an 
order-preserving encoding.

By employing these partitioning rules, users can easily trade off between query parallelism and query 
concurrency based on their particular workload. For example, consider a time series application which 
stores rows of the form (host, metric, time, value) and in which inserts are almost always done with 
monotonically increasing time values. Choosing to hash-partition by timestamp optimally spreads 
the insert load across all servers; however, a query for a specific metric on a specific host during a short 
time range must scan all tablets, limiting concurrency. A user might instead choose to range-partition 
by timestamp while adding separate hash partitioning rules for the metric name and hostname, 
which would provide a good trade-off of parallelism on write and concurrency on read.

Though users must understand the concept of partitioning to optimally use Kudu, the details of 
partition key encoding are fully transparent to the user: encoded partition keys are not exposed  
in the API. Users always specify rows, partition split points, and key ranges using structured row 
objects or SQL tuple syntax. Although this flexibility in partitioning is relatively unique in the 
“NoSQL” space, it should be quite familiar to users and administrators of analytic MPP database 
management systems.

3.3 Replication
In order to provide high availability and durability while running on large commodity clusters, Kudu 
replicates all of its table data across multiple machines. When creating a table, the user species a 
replication factor, typically 3 or 5, depending on the application’s availability SLAs. Kudu’s master 
strives to ensure that the requested number of replicas are maintained at all times (see Section 3.4.2).

Kudu employs the Raft[25] consensus algorithm to replicate its tablets. In particular, Kudu uses 
Raft to agree upon a logical log of operations (e.g. insert/update/delete) for each tablet. When a 
client wishes to perform a write, it first locates the leader replica (see Section 3.4.3) and sends  
a Write RPC to this replica. If the client’s information was stale and the replica is no longer the 
leader, it rejects the request, causing the client to invalidate and refresh its metadata cache and 
resend the request to the new leader. If the replica is in fact still acting as the leader, it employs a 
local lock manager to serialize the operation against other concurrent operations, picks an MVCC 
timestamp, and proposes the operation via Raft to its followers. If a majority of replicas accept the 
write and log it to their own local write-ahead logs2, the write is considered durably replicated and 
thus can be committed on all replicas. Note that there is no restriction that the leader must write 
an operation to its local log before it may be committed: this provides good latency-smoothing 
properties even if the leader’s disk is performing poorly.

In the case of a failure of a minority of replicas, the leader can continue to propose and commit 
operations to the tablet’s replicated log. If the leader itself fails, the Raft algorithm quickly elects  
a new leader. By default, Kudu uses a 500-millisecond heartbeat interval and a 1500-millisecond 
election timeout; thus, after a leader fails, a new leader is typically elected within a few seconds.

Kudu implements some minor improvements on the Raft algorithm. In particular:

1. As proposed in [19] we employ an exponential back-off algorithm after a failed leader election. 
We found that, as we typically commit Raft’s persistent metadata to contended hard disk 
drives, such an extension was necessary to ensure election convergence on busy clusters.

2 Kudu gives administrators the option of considering a write-ahead log entry committed either after it has been written to the operating 
system buer cache, or only after an explicit fsync operation has been performed. The latter provides durability even in the event of a full 
data-center outage, but decreases write performance substantially on spinning hard disks.
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2. When a new leader contacts a follower whose log diverges from its own, Raft proposes 
marching backward one operation at a time until discovering the point where they diverged. 
Kudu instead immediately jumps back to the last known committedIndex, which is always 
guaranteed to be present on any divergent follower. This minimizes the potential number  
of round trips at the cost of potentially sending redundant operations over the network.  
We found this simple to implement, and it ensures that divergent operations are aborted 
after a single round-trip.

Kudu does not replicate the on-disk storage of a tablet, but rather just its operation log. The 
physical storage of each replica of a tablet is fully decoupled. This yields several advantages:

• When one replica is undergoing physical-layer background operations such as flushes or compactions 
(see Section 4), it is unlikely that other nodes are operating on the same tablet at the same time. 
Because Raft may commit after an acknowledgment by a majority of replicas, this reduces the 
impact of such physical-layer operations on the tail latencies experienced by clients for writes. 
In the future, we anticipate implementing techniques such as the speculative read requests 
described in [16] to further decrease tail latencies for reads in concurrent read/write workloads.

• During development, we discovered some rare race conditions in the physical storage layer  
of the Kudu tablet. Because the storage layer is decoupled across replicas, none of these race 
conditions resulted in unrecoverable data loss: in all cases, we were able to detect that one 
replica had become corrupt (or silently diverged from the majority) and repair it.

3.3.1 Configuration Change
Kudu implements Raft configuration change following the one-by-one algorithm proposed in [24]. 
In this approach, the number of voters in the Raft configuration may change by at most one in 
each configuration change. In order to grow a 3-replica configuration to 5 replicas, two separate 
configuration changes (3➝4, 4➝5) must be proposed and committed.

Kudu implements the addition of new servers through a process called remote bootstrap. In our design, 
in order to add a new replica, we first add it as a new member in the Raft configuration, even before 
notifying the destination server that a new replica will be copied to it. When this configuration change 
has been committed, the current Raft leader replica triggers a StartRemoteBootstrap RPC, which 
causes the destination server to pull a snapshot of the tablet data and log from the current leader. 
When the transfer is complete, the new server opens the tablet following the same process as after 
a server restart. When the tablet has opened the tablet data and replayed any necessary write-ahead 
logs, it has fully replicated the state of the leader at the time it began the transfer, and may begin 
responding to Raft RPCs as a fully-functional replica.

In our current implementation, new servers are added immediately as VOTER replicas. This has the 
disadvantage that, after moving from a 3-server configuration to a 4-server configuration, three 
out of the four servers must acknowledge each operation. Because the new server is in the 
process of copying, it is unable to acknowledge operations. If another server were to crash during 
the snapshot-transfer process, the tablet would become unavailable for writes until the remote 
bootstrap finished.

To address this issue, we plan to implement a PRE_VOTER replica state. In this state, the leader 
will send Raft updates and trigger remote bootstrap on the target replica, but not count it as a voter 
when calculating the size of the configuration’s majority. Upon detecting that the PRE_VOTER 
replica has fully caught up to the current logs, the leader will automatically propose and commit 
another configuration change to transition the new replica to a full VOTER.

When removing replicas from a tablet, we follow a similar approach: the current Raft leader proposes 
an operation to change the configuration to one that does not include the node to be evicted. If this 
is committed, then the remaining nodes will no longer send messages to the evicted node, though 
the evicted node will not know that it has been removed. When the configuration change is committed, 
the remaining nodes report the configuration change to the Master, which is responsible for cleaning 
up the orphaned replica (see Section 3.4.2).
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3.4 The Kudu Master
Kudu’s central master process has several key responsibilities:

1. Act as a catalog manager, keeping track of which tables and tablets exist, as well as their schemas, 
desired replication levels, and other metadata. When tables are created, altered, or deleted, the 
Master coordinates these actions across the tablets and ensures their eventual completion.

2. Act as a cluster coordinator, keeping track of which servers in the cluster are alive and 
coordinating redistribution of data after server failures.

3. Act as a tablet directory, keeping track of which tablet servers are hosting replicas of each tablet.

We chose a centralized, replicated master design over a fully peer-to-peer design for simplicity of 
implementation, debugging, and operations.

3.4.1 Catalog Manager
The master itself hosts a single-tablet table which is restricted from direct access by users. The master 
internally writes catalog information to this tablet, while keeping a full write-through cache of the 
catalog in memory at all times. Given the large amounts of memory available on current commodity 
hardware, and the small amount of metadata stored per tablet, we do not anticipate this becoming  
a scalability issue in the near term. If scalability becomes an issue, moving to a paged cache 
implementation would be a straightforward evolution of the architecture.

The catalog table maintains a small amount of state for each table in the system. In particular, it keeps 
the current version of the table schema, the state of the table (creating, running, deleting, etc), and 
the set of tablets which comprise the table. The master services a request to create a table by 
first writing a table record to the catalog table indicating a CREATING state. Asynchronously, it 
selects tablet servers to host tablet replicas, creates the Master-side tablet metadata, and sends 
asynchronous requests to create the replicas on the tablet servers. If the replica creation fails or 
times out on a majority of replicas, the tablet can be safely deleted and a new tablet created with 
a new set of replicas. If the Master fails in the middle of this operation, the table record indicates 
that a roll-forward is necessary and the master can resume where it left off. A similar approach is 
used for other operations such as schema changes and deletion, where the Master ensures that 
the change is propagated to the relevant tablet servers before writing the new state to its own 
storage. In all cases, the messages from the Master to the tablet servers are designed to be 
idempotent, such that on a crash and restart, they can be safely reset.

Because the catalog table is itself persisted in a Kudu tablet, the Master supports using Raft to 
replicate its persistent state to backup master processes. Currently, the backup masters act only 
as Raft followers and do not serve client requests. Upon becoming elected leader by the Raft algorithm, 
a backup master scans its catalog table, loads its in-memory cache, and begins acting as an active 
master following the same process as a master restart.

3.4.2 Cluster Coordination
Each of the tablet servers in a Kudu cluster is statically configured with a list of host names for 
the Kudu masters. Upon startup, the tablet servers register with the Masters and proceed to send 
tablet reports indicating the total set of tablets which they are hosting. The first such tablet report 
contains information about all tablets. All future tablet reports are incremental, only containing 
reports for tablets that have been newly created, deleted, or modified (e.g. processed a schema 
change or Raft configuration change).

A critical design point of Kudu is that, while the Master is the source of truth about catalog information, 
it is only an observer of the dynamic cluster state. The tablet servers themselves are always authoritative 
about the location of tablet replicas, the current Raft configuration, the current schema version of 
a tablet, etc. Because tablet replicas agree on all state changes via Raft, every such change can be 
mapped to a specific Raft operation index in which it was committed. This allows the Master to ensure 
that all tablet state updates are idempotent and resilient to transmission delays: the Master simply 
compares the Raft operation index of a tablet state update and discards it if the index is not newer 
than the Master’s current view of the world.
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This design choice leaves much responsibility in the hands of the tablet servers themselves. For 
example, rather than detecting tablet server crashes from the Master, Kudu instead delegates that 
responsibility to the Raft LEADER replicas of any tablets with replicas on the crashed machine. The 
leader keeps track of the last time it successfully communicated with each follower, and if it has failed 
to communicate for a significant period of time, it declares the follower dead and proposes a Raft 
configuration change to evict the follower from the Raft configuration. When this configuration 
change is successfully committed, the remaining tablet servers will issue a tablet report to the 
Master to advise it of the decision made by the leader.

In order to regain the desired replication count for the tablet, the Master selects a tablet server to 
host a new replica based on its global view of the cluster. After selecting a server, the Master suggests 
a configuration change to the current leader replica for the tablet. However, the Master itself is 
powerless to change a tablet configuration — it must wait for the leader replica to propose and 
commit the configuration change operation, at which point the Master is notified of the configuration 
change’s success via a tablet report. If the Master’s suggestion failed (e.g. because the message was 
lost) it will stubbornly retry periodically until successful. Because these operations are tagged with 
the unique index of the degraded configuration, they are fully idempotent and conflict-free, even  
if the Master issues several conflicting suggestions, as might happen soon after a master fail-over.

The master responds similarly to extra replicas of tablets. If the Master receives a tablet report which 
indicates that a replica has been removed from a tablet configuration, it stubbornly sends DeleteTablet 
RPCs to the removed node until the RPC succeeds. To ensure eventual cleanup even in the case of 
a master crash, the Master also sends such RPCs in response to a tablet report which identifies 
that a tablet server is hosting a replica which is not in the newest committed Raft configuration.

3.4.3 Tablet Directory
In order to efficiently perform read and write operations without intermediate network hops, clients 
query the Master for tablet location information. Clients are “thick” and maintain a local metadata 
cache which includes their most recent information about each tablet they have previously accessed, 
including the tablet’s partition key range and its Raft configuration. At any point in time, the client’s 
cache may be stale; if the client attempts to send a write to a server which is no longer the leader 
for a tablet, the server will reject the request. The client then contacts the Master to learn about the 
new leader. In the case that the client receives a network error communicating with its presumed 
leader, it follows the same strategy, assuming that the tablet has likely elected a  new leader.

In the future, we plan to piggy-back the current Raft configuration on the error response if a client 
contacts a non-leader replica. This will prevent extra round-trips to the master after leader 
elections, since typically the followers will have up-to-date information.

Because the Master maintains all tablet partition range information in memory, it scales to a high 
number of requests per second, and responds with very low latency. In a 270-node cluster running 
a benchmark workload with thousands of tablets, we measured the 99.99th percentile latency of 
tablet location lookup RPCs at 3.2ms, with the 95th percentile at 374 microseconds and 75th percentile 
at 91 microseconds. Thus, we do not anticipate that the tablet directory lookups will become a 
scalability bottleneck at current target cluster sizes. If they do become a bottleneck, we note that  
it is always safe to serve stale location information, and thus this portion of the Master can be 
trivially partitioned and replicated across any number of machines.

4 Tablet storage
Within a tablet server, each tablet replica operates as an entirely separate entity, significantly 
decoupled from the partitioning and replication systems described in sections 3.2 and 3.3. During 
development of Kudu, we found that it was convenient to develop the storage layer somewhat 
independently from the higher-level distributed system, and in fact many of our functional and 
unit tests operate entirely within the confines of the tablet implementation.

Due to this decoupling, we are exploring the idea of providing the ability to select an underlying 
storage layout on a per-table, per-tablet or even per-replica basis — a distributed analogue of 
Fractured Mirrors, as proposed in [26]. However, we currently offer only a single storage layout, 
described in this section.
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4.1 Overview
The implementation of tablet storage in Kudu addresses several goals:

1. Fast columnar scans – In order to provide analytic performance comparable to best-of-breed 
immutable data formats such as Parquet and ORCFile[7], it’s critical that the majority of 
scans can be serviced from efficiently encoded columnar data files.

2. Low-latency random updates – In order to provide fast access to update or read arbitrary 
rows, we require O(lg n) lookup complexity for random access.

3. Consistency of performance – Based on our experiences supporting other data storage 
systems, we have found that users are willing to trade off peak performance in order to 
achieve predictability.

In order to provide these characteristics simultaneously, Kudu does not reuse any pre-existing 
storage engine, but rather chooses to implement a new hybrid columnar store architecture.

4.2 RowSets
Tablets in Kudu are themselves subdivided into smaller units called RowSets. Some RowSets exist 
in memory only, termed MemRowSets, while others exist in a combination of disk and memory, termed 
DiskRowSets. Any given live (not deleted) row exists in exactly one RowSet; thus, RowSets form 
disjoint sets of rows. However, note that the primary key intervals of different RowSets may intersect.

At any point in time, a tablet has a single MemRowSet which stores all recently-inserted rows. Because 
these stores are entirely in-memory, a background thread periodically flushes MemRowSets to disk. 
The scheduling of these flushes is described in further detail in Section 4.11.

When a MemRowSet has been selected to be flushed, a new, empty MemRowSet is swapped in to 
replace it. The previous MemRowSet is written to disk, and becomes one or more DiskRowSets. This 
flush process is fully concurrent: readers can continue to access the old MemRowSet while it is being 
flushed, and updates and deletes of rows in the flushing MemRowSet are carefully tracked and 
rolled forward into the on-disk data upon completion of the flush process.

4.3 MemRowSet Implementation
MemRowSets are implemented by an in-memory concurrent B-tree with optimistic locking, 
broadly based off the design of MassTree[22], with the following changes:

1. We do not support removal of elements from the tree. Instead, we use MVCC records to 
represent deletions. MemRowSets eventually flush to other storage, so we can defer removal 
of these records to other parts of the system.

2. Similarly, we do not support arbitrary in-place updates of records in the tree. Instead, we 
allow only modifications which do not change the value’s size: this permits atomic compare-
and-swap operations to append mutations to a per-record linked list.

3. We link together leaf nodes with a next pointer, as in the B+-tree[13]. This improves our 
sequential scan performance, a critical operation.

4. We do not implement the full “trie of trees,” but rather just a single tree, since we are less 
concerned about extremely high random access throughput compared to the original application.

In order to optimize for scan performance over random access, we use slightly larger internal and 
leaf nodes sized at four cache-lines (256 bytes) each.

Unlike most data in Kudu, MemRowSets store rows in a row-wise layout. This still provides acceptable 
performance, since the data is always in memory. To maximize throughput despite the choice of 
row storage, we utilize SSE2 memory prefetch instructions to prefetch one leaf node ahead of our 
scanner, and JIT-compile record projection operations using LLVM[5]. These optimizations provide 
significant performance boosts relative to the naive implementation.

In order to form the key for insertion into the B-tree, we encode each row’s primary key using an 
order-preserving encoding as described in Section 3.2. This allows efficient tree traversal using 
only memcmp operations for comparison, and the sorted nature of the MemRowSet allows for 
efficient scansover primary key ranges or individual key lookups.
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4.4 DiskRowSet Implementation
When MemRowSets flush to disk, they become DiskRowSets. While flushing a MemRowSet, we roll the 
DiskRowSet after each 32 MB of IO. This ensures that no DiskRowSet is too large, thus allowing 
efficient incremental compaction as described later in Section 4.10. Because a MemRowSet is in 
sorted order, the flushed DiskRowSets will themselves also be in sorted order, and each rolled 
segment will have a disjoint interval of primary keys.

A DiskRowSet is made up of two main components: base data and delta stores. The base data is a 
column-organized representation of the rows in the DiskRowSet. Each column is separately written 
to disk in a single contiguous block of data. The column itself is subdivided into small pages to allow 
for granular random reads, and an embedded B-tree index allows efficient seeking to each page based 
on its ordinal offset within the rowset. Column pages are encoded using a variety of encodings, such 
as dictionary encoding, bitshue[23], or front coding, and is optionally compressed using generic 
binary compression schemes such as LZ4, gzip, or bzip2. These encodings and compression options 
may be specified explicitly by the user on a per-column basis, for example to designate that a large 
infrequently-accessed text column should be gzipped, while a column that typically stores small 
integers should be bit-packed. Several of the page formats supported by Kudu are common with 
those supported by Parquet, and our implementation shares much code with Impala’s Parquet library.

In addition to flushing columns for each of the user-specified columns in the table, we also write  
a primary key index column, which stores the encoded primary key for each row. We also flush a 
chunked Bloom filter[10] which can be used to test for the possible presence of a row based on  
its encoded primary key.

Because columnar encodings are difficult to update in place, the columns within the base data are 
considered immutable once flushed. Instead, updates and deletes are tracked through structures 
termed delta stores. Delta stores are either in-memory DeltaMemStores, or on-disk DeltaFiles. A 
DeltaMemStore is a concurrent B-tree which shares the implementation described above. A DeltaFile 
is a binary-typed column block. In both cases, delta stores maintain a mapping from (row offset, 
timestamp) tuples to RowChangeList records. The row offset is simply the ordinal index of a row 
within the RowSet { for example, the row with the lowest primary key has offset 0. The timestamp  
is the MVCC timestamp assigned when the operation was originally written. The RowChangeList 
is a binary-encoded list of changes to a row, for example indicating SET column id 3 = ‘foo’ or DELETE.

When servicing an update to data within a DiskRowSet, we first consult the primary key index 
column. By using its embedded B-tree index, we can efficiently seek to the page containing the 
target row. Using page-level metadata, we can determine the row offset for the first cell within 
that page. By searching within the page (eg via in-memory binary search) we can then calculate 
the target row’s offset within the entire DiskRowSet. Upon determining this offset, we insert a  
new delta record into the rowset’s DeltaMemStore.

4.5 Delta Flushes
Because the DeltaMemStore is an in-memory store, it has finite capacity. The same background 
process which schedules flushes of MemRowSets also schedules flushes of DeltaMemStores. When 
flushing a DeltaMemStore, a new empty store is swapped in while the existing one is written to 
disk and becomes a DeltaFile. A DeltaFile is a simple binary column which contains an immutable 
copy of the data that was previously in memory.

4.6 INSERT path
As described previously, each tablet has a single MemRowSet which is holds recently inserted 
data; however, it is not sufficient to simply write all inserts directly to the current MemRowSet, 
since Kudu enforces a primary key uniqueness constraint. In other words, unlike many NoSQL 
stores, Kudu differentiates INSERT from UPSERT.

In order to enforce the uniqueness constraint, Kudu must consult all of the existing DiskRowSets 
before inserting the new row. Because there may be hundreds or thousands of DiskRowSets per 
tablet, it is important that this be done efficiently, both by culling the number of DiskRowSets to 
consult and by making the lookup within a DiskRowSet efficient. 
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In order to cull the set of DiskRowSets to consult on an INSERT operation, each DiskRowSet 
stores a Bloom filter of the set of keys present. Because new keys are never inserted into an 
existing DiskRowSet, this Bloom filter is static data. We chunk the Bloom filter into 4KB pages,  
each corresponding to a small range of keys, and index those pages using an immutable B-tree 
structure. These pages as well as their index are cached in a server-wide LRU page cache, 
ensuring that most Bloom filter accesses do not require a physical disk seek.

Additionally, for each DiskRowSet, we store the minimum and maximum primary key, and use these 
key bounds to index the DiskRowSets in an interval tree. This further culls the set of DiskRowSets 
to consult on any given key lookup. A background compaction process, described in Section 4.10 
reorganizes DiskRowSets to improve the effectiveness of the interval tree-based culling.

For any DiskRowSets that are not able to be culled, we must fall back to looking up the key to be 
inserted within its encoded primary key column. This is done via the embedded B-tree index in 
that column, which ensures a logarithmic number of disk seeks in the worst case. Again, this data 
access is performed through the page cache, ensuring that for hot areas of key space, no physical 
disk seeks are needed.

4.7 Read path
Similar to systems like X100[11], Kudu’s read path always operates in batches of rows in order to 
amortize function call cost and provide better opportunities for loop unrolling and SIMD instructions. 
Kudu’s in-memory batch format consists of a top-level structure which contains pointers to smaller 
blocks for each column being read. Thus, the batch itself is columnar in memory, which avoids any 
offset calculation cost when copying from columnar on-disk stores into the batch.

When reading data from a DiskRowSet, Kudu first determines if a range predicate on the scan  
can be used to cull the range of rows within this DiskRowSet. For example, if the scan has set a 
primary key lower bound, we perform a seek within the primary key column in order to determine  
a lower bound row offset; we do the same with any upper bound key. This converts the key range 
predicate into a row offset range predicate, which is simpler to satisfy as it requires no expensive 
string comparisons.

Next, Kudu performs the scan one column at a time. First, it seeks the target column to the correct 
row offset (0, if no predicate was provided, or the start row, if it previously determined a lower bound). 
Next, it copies cells from the source column into our row batch using the page-encoding specific 
decoder. Last, it consult the delta stores to see if any later updates have replaced cells with newer 
versions, based on the current scan’s MVCC snapshot, applying those changes to our in-memory 
batch as necessary. Because deltas are stored based on numerical row offsets rather than primary 
keys, this delta application process is extremely efficient: it does not require any per-row branching 
or expensive string comparisons.

After performing this process for each row in the projection, it returns the batch results, which will 
likely be copied into an RPC response and sent back to the client. The tablet server maintains stateful 
iterators on the server side for each scanner so that successive requests do not need to re-seek, 
but rather can continue from the previous point in each column file.

4.8 Lazy Materialization
If predicates have been specified for the scanner, we perform lazy materialization[9] of column data. 
In particular, we prefer to read columns which have associated range predicates before reading 
any other columns. After reading each such column, we evaluate the associated predicate. In the 
case that the predicate filters all rows in this batch, we short circuit the reading of other columns. 
This provides a significant speed boost when applying selective predicates, as the majority of 
data from the other selected columns will never be read from disk.

4.9 Delta Compaction
Because deltas are not stored in a columnar format, the scan speed of a tablet will degrade as 
ever more deltas are applied to the base data. Thus, Kudu’s background maintenance manager 
periodically scans DiskRowSets to find any cases where a large number of deltas (as identified  
by the ratio between base data row count and delta count) have accumulated, and schedules a 
delta compaction operation which merges those deltas back into the base data columns.
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In particular, the delta compaction operation identifies the common case where the majority of 
deltas only apply to a subset of columns: for example, it is common for a SQL batch operation  
to update just one column out of a wide table. In this case, the delta compaction will only rewrite  
that single column, avoiding IO on the other unmodified columns.

4.10 RowSet Compaction
In addition to compacting deltas into base data, Kudu also periodically compacts different DiskRowSets 
together in a process called RowSet compaction. This process performs a key-based merge of two 
or more DiskRowSets, resulting in a sorted stream of output rows. The output is written back to new 
DiskRowSets, again rolling every 32 MB, to ensure that no DiskRowSet in the system is too large.

RowSet compaction has two goals:

1. We take this opportunity to remove deleted rows.

2. This process reduces the number of DiskRowSets that overlap in key range. By reducing the 
amount by which RowSets overlap, we reduce the number of RowSets which are expected to 
contain a randomly selected key in the tablet. This value acts as an upper bound for the 
number of Bloom filter lookups, and thus disk seeks, expected to service a write operation 
within the tablet.

4.11 Scheduling maintenance
As described in the sections above, Kudu has several different background maintenance 
operations that it performs to reduce memory usage and improve performance of the on-disk 
layout. These operations are performed by a pool of maintenance threads that run within the 
tablet server process. Toward the design goal of consistent performance, these threads run all  
the time, rather than being triggered by specific events or conditions. Upon the completion of one 
maintenance operation, a scheduler process evaluates the state of the on-disk storage and picks 
the next operation to perform based on a set of heuristics meant to balance memory usage, 
write-ahead log retention, and the performance of future read and write operations.

In order to select DiskRowSets to compact, the maintenance scheduler solves an optimization 
problem: given an IO budget (typically 128 MB), select a set of DiskRowSets such that compacting 
them would reduce the expected number of seeks, as described above. This optimization turns 
out to be a series of instances of the well-known integer knapsack problem, and is able to be 
solved efficiently in a few milliseconds.

Because the maintenance threads are always running small units of work, the operations can react 
quickly to changes in workload behavior. For example, when insertion workload increases, the 
scheduler quickly reacts and flushes in-memory stores to disk. When the insertion workload reduces, 
the server performs compactions in the background to increase performance for future writes. 
This provides smooth transitions in performance, making it easier for developers and operators  
to perform capacity planning and estimate the latency profile of their workloads.

5 Hadoop Integration
5.1 MapReduce and Spark
Kudu was built in the context of the Hadoop ecosystem, and we have prioritized several key 
integrations with other Hadoop components. In particular, we provide bindings for MapReduce 
jobs to either input or output data to Kudu tables. These bindings can be easily used in Spark[28]  
as well. A small glue layer binds Kudu tables to higher-level Spark concepts such as DataFrames  
and Spark SQL tables.

These bindings offer native support for several key features:

• Locality – internally, the input format queries the Kudu master process to determine the 
current locations for each tablet, allowing for data-local processing.

• Columnar Projection – the input format provides a simple API allowing the user to select  
which columns are required for their job, thus minimizing the amount of IO required.

• Predicate pushdown – the input format offers a simple API to specify predicates which will be 
evaluated server-side before rows are passed to the job. This predicate push-down increases 
performance and can be easily accessed through higher-level interfaces such as Spark SQL.
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5.2 Impala
Kudu is also deeply integrated with Cloudera Impala[20]. In fact, Kudu provides no shell or SQL 
parser of its own: the only support for SQL operations is via its integration with Impala. The Impala 
integration includes several key features:

• Locality – the Impala planner uses the Kudu Java API to inspect tablet location information  
and distributes back-end query processing tasks to the same nodes which store the data. In 
typical queries, no data is transferred over the network from Kudu to Impala. We are currently 
investigating further optimizations based on shared memory transport to make the data transfer 
even more efficient.

• Predicate pushdown support – the Impala planner has been modified to identify predicates which 
are able to be pushed down to Kudu. In many cases, pushing a predicate allows significant reduction 
in IO, because Kudu lazily materializes columns only after predicates have been passed.

• DDL extensions – Impala’s DDL statements such as CREATE TABLE have been extended to 
support specifying Kudu partitioning schemas, replication factors, and primary key definitions.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

HDFS 4.1 10.4 7.6 9.2 17.5 3.5 12.7 31.5

Kudu 4.3 9.1 6.1 7.5 16.0 1.4 13.8 10.5

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

HDFS 49.7 6.9 3.3 8.5 6.1 3.3 4.2 2.8

Kudu 47.7 3.8 3.4 3.0 5.5 1.4 3.9 2.4

Q17 Q18 Q19 Q20 Q21 Q22 Geomean

HDFS 23.4 14.8 19.4 6.1 22.4 3.6 8.8

Kudu 17.7 19.0 17.8 7.0 12.0 3.6 6.7
Table 1: TPC-H query times: Impala on Kudu vs Impala on Parquet/HDFS (seconds, lower is better)

• DML extensions – Because Kudu is the first mutable store in the Hadoop ecosystem that is 
suitable for fast analytics, Impala previously did not support mutation statements such as 
UPDATE and DELETE. These statements have been implemented for Kudu tables.

Impala’s modular architecture allows a single query to transparently join data from multiple different 
storage components. For example, a text log file on HDFS can be joined against a large dimension 
table stored in Kudu.

6 Performance evaluation
6.1 Comparison with Parquet
To evaluate the performance of Kudu for analytic workloads, we loaded the industry-standard TPC-H 
data set at scale factor 100 on a cluster of 75 nodes, each with 64GB of memory, 12 spinning disks, 
and dual 6-core Xeon E5-2630L processors running at 2GHz. Because the total memory on the cluster 
is much larger than the data to be queried, all queries operate fully against cached data; however, 
all data is fully persisted in the columnar DiskRowSet storage of Kudu rather than being left in 
memory stores.

We used Impala 2.2 to run the full set of 22 TPC-H queries against the same data set stored in Parquet 
as well as on Kudu. For the Kudu tables, we hash-partitioned each table by its primary key into 256 
buckets, with the exception of the very small nation and region dimension tables, which were stored 
in a single tablet each. All data was loaded using CREATE TABLE AS SELECT statements from 
within Impala.

While we have not yet performed an in-depth benchmark including concurrent workloads, we compared 
the wall time of each TPC-H query between the two systems. The results are summarized in Table 1. 
Across the set of queries, Kudu performed on average 31% faster than Parquet. We believe that Kudu’s 
performance advantage is due to two factors:

1. Lazy materialization - Several of the queries in TPC-H include a restrictive predicate on 
larger tables such as lineitem. Kudu supports lazy materialization, avoiding IO and CPU  
costs on other columns in the cases where the predicate does not match. The current 
implementation of Parquet in Impala does not support this feature.
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2. CPU efficiency - The Parquet reader in Impala has not been fully optimized, and currently invokes 
many per-row function calls. These branches limit its CPU efficiency. We expect that our advantage 
over Parquet will eventually be eroded as the Parquet implementation continues to be optimized. 
Additionally, we expect that Parquet will perform better on disk-resident workloads as it issues 
large 8MB IO accesses, as opposed to the smaller page-level accesses performed by Kudu.

While the performance of Kudu compared with columnar formats warrants further investigation,  
it is clear that Kudu is able to achieve similar scan speeds to immutable storage while providing 
mutable characteristics.

6.2 Comparison with Phoenix
Another implementation of SQL in the Hadoop ecosystem is Apache Phoenix[4]. Phoenix provides 
a SQL query layer on top of HBase. Although Phoenix is not primarily targeted at analytic workloads, 
we performed a small number of comparisons to illustrate the order-of-magnitude difference in 
performance between Kudu and HBase for scan-heavy analytic workloads.

To eliminate scalability effects and compare raw scan performance, we ran these comparisons on 
a smaller cluster, consisting of 9 worker nodes plus one master node, each with 48GB of RAM, 3 
data disks, and dual 4-core Xeon L5630 processors at 2.13GHz. We used Phoenix 4.3 and HBase 1.0.

In this benchmark, we loaded the same TPC-H lineitem table (62GB in CSV format) into Phoenix 
using the provided CsvBulkLoadTool MapReduce job. We configured the Phoenix table to use 100 
hash partitions, and created an equal number of tablets within Kudu. In both Kudu and Phoenix, we 
used the DOUBLE type for non-integer numeric columns, since Kudu does not currently support the 
DECIMAL type. We configured HBase with default block cache settings, resulting in 9.6GB of on-heap 
cache per server. Kudu was configured with only 1GB of in-process block cache, instead relying on 
the OS-based buffer cache to avoid physical disk IO. We used the default HBase table attributes 
provided by Phoenix: FAST DIFF encoding, no compression, and one historical version per cell. On 
Impala, we used a per-query option to disable runtime code generation in queries where it was not 
beneficial, eliminating a source of constant overhead unrelated to the storage engine.

After loading the data, we performed explicit major compactions to ensure 100% HDFS block locality, 
and ensured that the table’s regions (analogous to Kudu tablets) were equally spread across the 9 
worker nodes. The 62GB data set expanded to approximately 570GB post-replication in HBase, whereas 
the data in Kudu was 227GB post-replication3. HBase region servers and Kudu tablet servers were 
allocated 24GB of RAM, and we ran each service alone in the cluster for its benchmark. We verified 
during both workloads that no hard disk reads were generated, to focus on CPU efficiency, though 
we project that on a disk-resident workload, Kudu will increase its performance edge due to its 
columnar layout and better storage efficiency.

Q1 scan 6 columns [TPC-H Q1]
Q2 scan no columns SELECT COUNT(*) FROM lineitem;
Q3 non-key predicate SELECT COUNT(*) FROM lineitem WHERE l quantity = 48
Q4 key lookup SELECT COUNT(*) FROM lineitem WHERE l orderkey = 2000

Table 2: Queries used to compare Impala-Kudu vs Phoenix-HBase

Load Q1 Q2 Q3 Q4
Phoenix-HBase 2152s* 219 76 131 0.04s
Impala-Kudu 1918s 13.2 1.7 0.7 0.15s
Impala-Parquet 155s 9.3 1.4 1.5s 1.37ss

Table 3: Phoenix-HBase vs Impala-Kudu. Load time for Phoenix does not include the time required for a major compaction to ensure data locality, 
which required an additional 20 minutes to complete.

In order to focus on scan speed rather than join performance, we focused only on TPCH Q1, which 
reads only the lineitem table. We also ran several other simple queries, listed in Table 2, in order to 
quantify the performance difference between the Impala-Kudu system and the Phoenix-HBase system 
on the same hardware. We ran each query 10 times and reported the median runtime. Across the 
analytic queries, Impala-Kudu outperformed Phoenix-HBase by between 16x and 187x. For short 
scans of primary key ranges, both Impala-Kudu and Phoenix-HBase returned sub-second results, 
with Phoenix winning out due to lower constant factors during query planning. The results are 
summarized in Table 3.

3 In fact, our current implementation of CREATE TABLE AS SELECT does not enable dictionary compression. With this compression enabled, 
the Kudu table size is cut in half again.
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6.3 Random access performance
Although Kudu is not designed to be an OLTP store, one of its key goals is to be suitable for lighter 
random-access workloads. To evaluate Kudu’s random-access performance, we used the Yahoo 
Cloud Serving Benchmark (YCSB)[?] on the same 10-node cluster used in Section 6.2. We built 
YCSB from its master branch4 and added a binding to run against Kudu. For these benchmarks, 
we configured both Kudu and HBase to use up to 24 GB of RAM. HBase automatically allocated  
9.6 GB for the block cache and the remainder of the heap for its in-memory stores. For Kudu, we 
allocated only 1GB for the block cache, preferring to rely on Linux buffer caching. We performed 
no other tuning. For both Kudu and HBase, we pre-split the table into 100 tablets or regions, and 
ensured that they were spread evenly across the nodes.

Workload Description
Load Load the table
A 50% random-read, 50% update
B 95% random-read, 5% update
C 100% random read
D 95% random read, 5% insert

Table 4: YCSB Workloads

We configured YCSB to load a data set with 100 million rows, each row holding 10 data columns 
with 100 bytes each. Because Kudu does not have the concept of a special row key column, we 
added an explicit key column in the Kudu schema. For this benchmark, the data set ts entirely in 
RAM; in the future we hope to do further benchmarks on flash-resident or disk-resident workloads, 
but we assume that, given the increasing capacity of inexpensive RAM, most latency-sensitive 
online workloads will primarily fit in memory.

Results for the five YCSB workloads are summarized in Table 4. We ran the workloads in sequence 
by first loading the table with data, then running workloads A through D in that order, with no pause 
in between. Each workload ran for 10 million operations. For loading data, we used 16 client threads 
and enabled client-side buffering to send larger batches of data to the backend storage engines. 
For all other workloads, we used 64 client threads and disabled client-side buffering.

We ran this full sequence two times for each storage engine, deleting and reloading the table in between. 
In the second run, we substituted a uniform access distribution for workloads A through C instead 
of the default Zipan (power-law) distribution. Workload D uses a special access distribution which 
inserts rows randomly, and random-reads those which have been recently inserted.

We did not run workload E, which performs short range scans, because the Kudu client currently 
lacks the ability to specify a limit on the number of rows returned. We did not run workload F, because 
it relies on an atomic compare-and-swap primitive which Kudu does not yet support. When these 
features are added to Kudu, we plan to run these workloads as well.

4 git hash 1f8cc5abdcad206c37039d9fbaea7cbf76089b48
5 We have identied several potential optimizations in this code path, tracked in KUDU — 749.
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Figure 1 presents the throughput reported by YCSB for each of the workloads. In nearly all workloads, 
HBase out-performs Kudu in terms of throughput. In particular, Kudu performs poorly in the Zipan 
update workloads, where the CPU time spent in reads is dominated by applying long chains of mutations 
stored in delta stores5. HBase, on the other hand, has long targeted this type of online workload 
and performs comparably in both access distributions.

Due to time limitations in preparing this paper for the first Kudu beta release, we do not have 
sufficient data to report on longer-running workloads, or to include a summary of latency percentiles. 
We anticipate updating this paper as results become available.
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